![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.3v | Structured version Visualization version GIF version |
Description: Version of 19.3 2191 with a disjoint variable condition, requiring fewer axioms. Any formula can be universally quantified using a variable which it does not contain. See also 19.9v 1980. (Contributed by Anthony Hart, 13-Sep-2011.) Remove dependency on ax-7 2004. (Revised by Wolf Lammen, 4-Dec-2017.) (Proof shortened by Wolf Lammen, 20-Oct-2023.) |
Ref | Expression |
---|---|
19.3v | ⊢ (∀𝑥𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spvw 1977 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
2 | ax-5 1906 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | 1, 2 | impbii 208 | 1 ⊢ (∀𝑥𝜑 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 |
This theorem depends on definitions: df-bi 206 df-ex 1775 |
This theorem is referenced by: 19.27v 1986 19.28v 1987 19.37v 1988 axrep1 5291 axrep6 5297 kmlem14 10206 zfcndrep 10657 zfcndpow 10659 zfcndac 10662 lfuhgr3 34947 bj-snsetex 36670 iooelexlt 37069 dford4 42687 relexp0eq 43368 |
Copyright terms: Public domain | W3C validator |