MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.8ad Structured version   Visualization version   GIF version

Theorem 19.8ad 2171
Description: If a wff is true, it is true for at least one instance. Deduction form of 19.8a 2170. (Contributed by DAW, 13-Feb-2017.)
Hypothesis
Ref Expression
19.8ad.1 (𝜑𝜓)
Assertion
Ref Expression
19.8ad (𝜑 → ∃𝑥𝜓)

Proof of Theorem 19.8ad
StepHypRef Expression
1 19.8ad.1 . 2 (𝜑𝜓)
2 19.8a 2170 . 2 (𝜓 → ∃𝑥𝜓)
31, 2syl 17 1 (𝜑 → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-12 2167
This theorem depends on definitions:  df-bi 206  df-ex 1775
This theorem is referenced by:  2ax6e  2466  dfmoeu  2526  copsexgw  5492  domtriomlem  10465  axrepnd  10617  axunndlem1  10618  axunnd  10619  axpownd  10624  axacndlem1  10630  axacndlem2  10631  axacndlem3  10632  axacndlem4  10633  axacndlem5  10634  axacnd  10635  pwfseqlem4a  10684  pwfseqlem4  10685  bnj1189  34640  isbasisrelowllem1  36834  isbasisrelowllem2  36835  gneispace  43564  cpcolld  43695  ovncvrrp  45952  ichreuopeq  46813
  Copyright terms: Public domain W3C validator
OSZAR »