MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2alimi Structured version   Visualization version   GIF version

Theorem 2alimi 1806
Description: Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
Hypothesis
Ref Expression
alimi.1 (𝜑𝜓)
Assertion
Ref Expression
2alimi (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓)

Proof of Theorem 2alimi
StepHypRef Expression
1 alimi.1 . . 3 (𝜑𝜓)
21alimi 1805 . 2 (∀𝑦𝜑 → ∀𝑦𝜓)
32alimi 1805 1 (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1531
This theorem was proved from axioms:  ax-mp 5  ax-gen 1789  ax-4 1803
This theorem is referenced by:  alcomiw  2038  2mo  2639  2eu6  2648  euind  3721  reuind  3750  sbnfc2  4440  opelopabt  5538  ssrel  5788  ssrelOLD  5789  ssrelrel  5802  fundif  6607  opabbrex  7477  fnoprabg  7549  tz7.48lem  8468  ssrelf  32426  bj-3exbi  36126  mpobi123f  37668  mptbi12f  37672  ismrc  42152  refimssco  43068  19.33-2  43850  pm11.63  43863  pm11.71  43865  axc5c4c711to11  43873  ichal  46835
  Copyright terms: Public domain W3C validator
OSZAR »