![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2alimi | Structured version Visualization version GIF version |
Description: Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
alimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2alimi | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | alimi 1805 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑦𝜓) |
3 | 2 | alimi 1805 | 1 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1531 |
This theorem was proved from axioms: ax-mp 5 ax-gen 1789 ax-4 1803 |
This theorem is referenced by: alcomiw 2038 2mo 2639 2eu6 2648 euind 3721 reuind 3750 sbnfc2 4440 opelopabt 5538 ssrel 5788 ssrelOLD 5789 ssrelrel 5802 fundif 6607 opabbrex 7477 fnoprabg 7549 tz7.48lem 8468 ssrelf 32426 bj-3exbi 36126 mpobi123f 37668 mptbi12f 37672 ismrc 42152 refimssco 43068 19.33-2 43850 pm11.63 43863 pm11.71 43865 axc5c4c711to11 43873 ichal 46835 |
Copyright terms: Public domain | W3C validator |