![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2falsed | Structured version Visualization version GIF version |
Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) (Proof shortened by Wolf Lammen, 11-Apr-2024.) |
Ref | Expression |
---|---|
2falsed.1 | ⊢ (𝜑 → ¬ 𝜓) |
2falsed.2 | ⊢ (𝜑 → ¬ 𝜒) |
Ref | Expression |
---|---|
2falsed | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2falsed.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | 2falsed.2 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
3 | 1, 2 | 2thd 265 | . 2 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
4 | 3 | con4bid 317 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: pm5.21ni 377 bianfd 534 sbcel12 4404 sbcne12 4408 sbcel2 4411 sbcbr 5197 csbxp 5771 smoord 8379 tfr2b 8410 axrepnd 10611 hasheq0 14348 m1exp1 16346 sadcadd 16426 stdbdxmet 24417 iccpnfcnv 24862 cxple2 26624 mirbtwnhl 28477 eupth2lem1 30021 ifnebib 32333 isoun 32475 1smat1 33399 xrge0iifcnv 33528 sgn0bi 34161 signswch 34187 fmlafvel 34989 fz0n 35319 hfext 35773 unccur 37070 ntrneiel2 43510 ntrneik4w 43524 eliin2f 44464 |
Copyright terms: Public domain | W3C validator |