![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3exbidv | Structured version Visualization version GIF version |
Description: Formula-building rule for three existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.) |
Ref | Expression |
---|---|
3exbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
3exbidv | ⊢ (𝜑 → (∃𝑥∃𝑦∃𝑧𝜓 ↔ ∃𝑥∃𝑦∃𝑧𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | exbidv 1917 | . 2 ⊢ (𝜑 → (∃𝑧𝜓 ↔ ∃𝑧𝜒)) |
3 | 2 | 2exbidv 1920 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦∃𝑧𝜓 ↔ ∃𝑥∃𝑦∃𝑧𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∃wex 1774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 |
This theorem depends on definitions: df-bi 206 df-ex 1775 |
This theorem is referenced by: ceqsex6v 3530 euotd 5510 oprabidw 7446 oprabid 7447 0mpo0 7498 eloprabga 7523 eloprabgaOLD 7524 eloprabi 8062 bnj981 34576 fundcmpsurbijinj 46741 |
Copyright terms: Public domain | W3C validator |