MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3imtr3g Structured version   Visualization version   GIF version

Theorem 3imtr3g 294
Description: More general version of 3imtr3i 290. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.)
Hypotheses
Ref Expression
3imtr3g.1 (𝜑 → (𝜓𝜒))
3imtr3g.2 (𝜓𝜃)
3imtr3g.3 (𝜒𝜏)
Assertion
Ref Expression
3imtr3g (𝜑 → (𝜃𝜏))

Proof of Theorem 3imtr3g
StepHypRef Expression
1 3imtr3g.2 . . 3 (𝜓𝜃)
2 3imtr3g.1 . . 3 (𝜑 → (𝜓𝜒))
31, 2biimtrrid 242 . 2 (𝜑 → (𝜃𝜒))
4 3imtr3g.3 . 2 (𝜒𝜏)
53, 4imbitrdi 250 1 (𝜑 → (𝜃𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  aleximi  1826  rexim  3076  sspwb  5451  ssopab2bw  5549  ssopab2b  5551  wetrep  5671  imadif  6638  ssoprab2b  7489  eqoprab2bw  7490  sucexeloniOLD  7814  suceloniOLD  7816  tfinds2  7869  iiner  8808  fsetcdmex  8882  fiint  9350  dfac5lem5  10152  axpowndlem3  10624  uzind  12687  isprm5  16681  funcres2  17887  fthres2  17924  ipodrsima  18536  subrgdvds  20537  hausflim  23929  dvres2  25885  precsexlem11  28165  axlowdimlem14  28838  atabs2i  32284  esum2dlem  33842  nn0prpw  35938  bj-hbext  36318  heibor1lem  37413  prter2  38483  dvelimf-o  38531  frege70  43505  frege72  43507  frege93  43528  frege110  43545  frege120  43555  pm11.71  43976  sbiota1  44013
  Copyright terms: Public domain W3C validator
OSZAR »