![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imtr3g | Structured version Visualization version GIF version |
Description: More general version of 3imtr3i 290. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
Ref | Expression |
---|---|
3imtr3g.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
3imtr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
Ref | Expression |
---|---|
3imtr3g | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 3imtr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | biimtrrid 242 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
4 | 3imtr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
5 | 3, 4 | imbitrdi 250 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: aleximi 1826 rexim 3076 sspwb 5451 ssopab2bw 5549 ssopab2b 5551 wetrep 5671 imadif 6638 ssoprab2b 7489 eqoprab2bw 7490 sucexeloniOLD 7814 suceloniOLD 7816 tfinds2 7869 iiner 8808 fsetcdmex 8882 fiint 9350 dfac5lem5 10152 axpowndlem3 10624 uzind 12687 isprm5 16681 funcres2 17887 fthres2 17924 ipodrsima 18536 subrgdvds 20537 hausflim 23929 dvres2 25885 precsexlem11 28165 axlowdimlem14 28838 atabs2i 32284 esum2dlem 33842 nn0prpw 35938 bj-hbext 36318 heibor1lem 37413 prter2 38483 dvelimf-o 38531 frege70 43505 frege72 43507 frege93 43528 frege110 43545 frege120 43555 pm11.71 43976 sbiota1 44013 |
Copyright terms: Public domain | W3C validator |