MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-i2m1 Structured version   Visualization version   GIF version

Axiom ax-i2m1 11198
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, justified by Theorem axi2m1 11174. (Contributed by NM, 29-Jan-1995.)
Assertion
Ref Expression
ax-i2m1 ((i · i) + 1) = 0

Detailed syntax breakdown of Axiom ax-i2m1
StepHypRef Expression
1 ci 11132 . . . 4 class i
2 cmul 11135 . . . 4 class ·
31, 1, 2co 7414 . . 3 class (i · i)
4 c1 11131 . . 3 class 1
5 caddc 11133 . . 3 class +
63, 4, 5co 7414 . 2 class ((i · i) + 1)
7 cc0 11130 . 2 class 0
86, 7wceq 1534 1 wff ((i · i) + 1) = 0
Colors of variables: wff setvar class
This axiom is referenced by:  0cn  11228  mul02lem2  11413  addrid  11416  cnegex2  11418  ine0  11671  ixi  11865  inelr  12224  c0exALT  41756  sn-1ne2  41762  re1m1e0m0  41874  reixi  41899  sn-inelr  41942
  Copyright terms: Public domain W3C validator
OSZAR »