Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj593 Structured version   Visualization version   GIF version

Theorem bnj593 34432
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj593.1 (𝜑 → ∃𝑥𝜓)
bnj593.2 (𝜓𝜒)
Assertion
Ref Expression
bnj593 (𝜑 → ∃𝑥𝜒)

Proof of Theorem bnj593
StepHypRef Expression
1 bnj593.1 . 2 (𝜑 → ∃𝑥𝜓)
2 bnj593.2 . . 3 (𝜓𝜒)
32eximi 1829 . 2 (∃𝑥𝜓 → ∃𝑥𝜒)
41, 3syl 17 1 (𝜑 → ∃𝑥𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803
This theorem depends on definitions:  df-bi 206  df-ex 1774
This theorem is referenced by:  bnj1266  34498  bnj1304  34506  bnj1379  34517  bnj594  34599  bnj852  34608  bnj908  34618  bnj996  34643  bnj907  34654  bnj1128  34677  bnj1148  34683  bnj1154  34686  bnj1189  34696  bnj1245  34701  bnj1279  34705  bnj1286  34706  bnj1311  34711  bnj1371  34716  bnj1398  34721  bnj1408  34723  bnj1450  34737  bnj1498  34748  bnj1514  34750  bnj1501  34754
  Copyright terms: Public domain W3C validator
OSZAR »