![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj593 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj593.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
bnj593.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
bnj593 | ⊢ (𝜑 → ∃𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj593.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
2 | bnj593.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | 2 | eximi 1829 | . 2 ⊢ (∃𝑥𝜓 → ∃𝑥𝜒) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 |
This theorem depends on definitions: df-bi 206 df-ex 1774 |
This theorem is referenced by: bnj1266 34498 bnj1304 34506 bnj1379 34517 bnj594 34599 bnj852 34608 bnj908 34618 bnj996 34643 bnj907 34654 bnj1128 34677 bnj1148 34683 bnj1154 34686 bnj1189 34696 bnj1245 34701 bnj1279 34705 bnj1286 34706 bnj1311 34711 bnj1371 34716 bnj1398 34721 bnj1408 34723 bnj1450 34737 bnj1498 34748 bnj1514 34750 bnj1501 34754 |
Copyright terms: Public domain | W3C validator |