MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  com15 Structured version   Visualization version   GIF version

Theorem com15 101
Description: Commutation of antecedents. Swap 1st and 5th. (Contributed by Jeff Hankins, 28-Jun-2009.) (Proof shortened by Wolf Lammen, 29-Jul-2012.)
Hypothesis
Ref Expression
com5.1 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
Assertion
Ref Expression
com15 (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑𝜂)))))

Proof of Theorem com15
StepHypRef Expression
1 com5.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
21com5l 100 . 2 (𝜓 → (𝜒 → (𝜃 → (𝜏 → (𝜑𝜂)))))
32com4r 94 1 (𝜏 → (𝜓 → (𝜒 → (𝜃 → (𝜑𝜂)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  injresinjlem  13785  addmodlteq  13944  fi1uzind  14491  brfi1indALT  14494  swrdswrdlem  14687  2cshwcshw  14809  lcmfdvdsb  16614  initoeu1  18000  initoeu2lem1  18003  initoeu2  18005  termoeu1  18007  upgrwlkdvdelem  29563  spthonepeq  29579  usgr2pthlem  29590  erclwwlktr  29845  erclwwlkntr  29894  3cyclfrgrrn1  30108  frgrnbnb  30116  frgrncvvdeqlem8  30129  frgrreg  30217  frgrregord013  30218  zerdivemp1x  37420  bgoldbtbndlem4  47148  bgoldbtbnd  47149  tgoldbach  47157
  Copyright terms: Public domain W3C validator
OSZAR »