MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  com3r Structured version   Visualization version   GIF version

Theorem com3r 87
Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994.)
Hypothesis
Ref Expression
com3.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
com3r (𝜒 → (𝜑 → (𝜓𝜃)))

Proof of Theorem com3r
StepHypRef Expression
1 com3.1 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
21com23 86 . 2 (𝜑 → (𝜒 → (𝜓𝜃)))
32com12 32 1 (𝜒 → (𝜑 → (𝜓𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com13  88  com3l  89  com14  96  expd  415  elabgt  3660  elabgtOLD  3661  mob  3712  otiunsndisj  5522  sotri2  6135  sotri3  6136  relresfld  6280  limuni3  7856  poxp  8133  soxp  8134  tz7.49  8466  omwordri  8593  odi  8600  omass  8601  oewordri  8613  nndi  8644  nnmass  8645  frr3g  9780  r1sdom  9798  tz9.12lem3  9813  cardlim  9996  carduni  10005  alephordi  10098  alephval3  10134  domtriomlem  10466  axdc3lem2  10475  axdc3lem4  10477  axcclem  10481  zorn2lem5  10524  zorn2lem6  10525  axdclem2  10544  alephval2  10596  gruen  10836  grur1a  10843  grothomex  10853  nqereu  10953  distrlem5pr  11051  psslinpr  11055  ltaprlem  11068  suplem1pr  11076  lbreu  12195  fleqceilz  13852  caubnd  15338  divconjdvds  16292  algcvga  16550  algfx  16551  gsummatr01lem3  22572  fiinopn  22816  hausnei  23245  hausnei2  23270  cmpsublem  23316  cmpsub  23317  fcfneii  23954  ppiublem1  27148  ssltun2  27755  nb3grprlem1  29206  cusgrsize2inds  29280  wlk1walk  29466  clwlkclwwlklem2  29823  clwwlkf  29870  clwwlknonwwlknonb  29929  vdgn1frgrv2  30119  frgrncvvdeqlem8  30129  frgrncvvdeqlem9  30130  frgrreggt1  30216  frgrregord013  30218  chintcli  31154  h1datomi  31404  strlem3a  32075  hstrlem3a  32083  mdexchi  32158  cvbr4i  32190  mdsymlem4  32229  mdsymlem6  32231  3jaodd  35309  ifscgr  35640  bj-fvimacnv0  36765  exrecfnlem  36858  wepwsolem  42466  rp-fakeimass  42942  ee233  43958  iccpartgt  46767  lighneal  46951  ldepspr  47541
  Copyright terms: Public domain W3C validator
OSZAR »