![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con2bid | Structured version Visualization version GIF version |
Description: A contraposition deduction. (Contributed by NM, 15-Apr-1995.) |
Ref | Expression |
---|---|
con2bid.1 | ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) |
Ref | Expression |
---|---|
con2bid | ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2bid.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) | |
2 | con2bi 353 | . 2 ⊢ ((𝜒 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜒)) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: con1bid 355 sotric 5612 sotrieq 5613 sotr2 5616 isso2i 5619 sotr3 5623 sotri2 6129 sotri3 6130 somin1 6133 somincom 6134 ordtri2 6398 ordtr3 6408 ordintdif 6413 ord0eln0 6418 soisoi 7330 weniso 7356 ordunisuc2 7842 limsssuc 7848 nlimon 7849 tfrlem15 8406 oawordeulem 8568 nnawordex 8651 onomeneqOLD 9247 fimaxg 9308 suplub2 9478 fiming 9515 wemapsolem 9567 cantnflem1 9706 rankval3b 9843 cardsdomel 9991 harsdom 10012 isfin1-2 10402 fin1a2lem7 10423 suplem2pr 11070 xrltnle 11305 ltnle 11317 leloe 11324 xrlttri 13144 xrleloe 13149 xrrebnd 13173 supxrbnd2 13327 supxrbnd 13333 om2uzf1oi 13944 rabssnn0fi 13977 cnpart 15213 bits0e 16397 bitsmod 16404 bitsinv1lem 16409 sadcaddlem 16425 trfil2 23784 xrsxmet 24718 metdsge 24758 ovolunlem1a 25418 ovolunlem1 25419 itg2seq 25665 noetasuplem4 27662 noetainflem4 27666 sltnle 27679 sleloe 27680 toslublem 32693 tosglblem 32695 isarchi2 32887 gsumesum 33672 sgnneg 34154 elfuns 35505 finminlem 35796 bj-bibibi 36057 itg2addnclem 37138 heiborlem10 37287 aks4d1p8 41552 cantnfresb 42747 naddwordnexlem4 42825 ontric3g 42946 or3or 43447 ntrclselnel2 43482 clsneifv3 43534 islininds2 47546 |
Copyright terms: Public domain | W3C validator |