![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-8 | Structured version Visualization version GIF version |
Description: Define the number 8. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
df-8 | ⊢ 8 = (7 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c8 12297 | . 2 class 8 | |
2 | c7 12296 | . . 3 class 7 | |
3 | c1 11133 | . . 3 class 1 | |
4 | caddc 11135 | . . 3 class + | |
5 | 2, 3, 4 | co 7414 | . 2 class (7 + 1) |
6 | 1, 5 | wceq 1534 | 1 wff 8 = (7 + 1) |
Colors of variables: wff setvar class |
This definition is referenced by: 8nn 12331 8re 12332 8cn 12333 8pos 12348 8m1e7 12369 7p1e8 12385 4p4e8 12391 5p3e8 12393 6p2e8 12395 7p2e9 12397 7lt8 12428 8p8e16 12787 9p8e17 12794 9p9e18 12795 8t8e64 12822 9t8e72 12829 log2ub 26874 3cubeslem3r 42101 rmydioph 42429 |
Copyright terms: Public domain | W3C validator |