MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-bc Structured version   Visualization version   GIF version

Definition df-bc 14289
Description: Define the binomial coefficient operation. For example, (5C3) = 10 (ex-bc 30256).

In the literature, this function is often written as a column vector of the two arguments, or with the arguments as subscripts before and after the letter "C". The expression (𝑁C𝐾) is read "𝑁 choose 𝐾". Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝑘𝑛 does not hold. (Contributed by NM, 10-Jul-2005.)

Assertion
Ref Expression
df-bc C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
Distinct variable group:   𝑘,𝑛

Detailed syntax breakdown of Definition df-bc
StepHypRef Expression
1 cbc 14288 . 2 class C
2 vn . . 3 setvar 𝑛
3 vk . . 3 setvar 𝑘
4 cn0 12497 . . 3 class 0
5 cz 12583 . . 3 class
63cv 1533 . . . . 5 class 𝑘
7 cc0 11133 . . . . . 6 class 0
82cv 1533 . . . . . 6 class 𝑛
9 cfz 13511 . . . . . 6 class ...
107, 8, 9co 7415 . . . . 5 class (0...𝑛)
116, 10wcel 2099 . . . 4 wff 𝑘 ∈ (0...𝑛)
12 cfa 14259 . . . . . 6 class !
138, 12cfv 6543 . . . . 5 class (!‘𝑛)
14 cmin 11469 . . . . . . . 8 class
158, 6, 14co 7415 . . . . . . 7 class (𝑛𝑘)
1615, 12cfv 6543 . . . . . 6 class (!‘(𝑛𝑘))
176, 12cfv 6543 . . . . . 6 class (!‘𝑘)
18 cmul 11138 . . . . . 6 class ·
1916, 17, 18co 7415 . . . . 5 class ((!‘(𝑛𝑘)) · (!‘𝑘))
20 cdiv 11896 . . . . 5 class /
2113, 19, 20co 7415 . . . 4 class ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘)))
2211, 21, 7cif 4525 . . 3 class if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0)
232, 3, 4, 5, 22cmpo 7417 . 2 class (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
241, 23wceq 1534 1 wff C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
Colors of variables: wff setvar class
This definition is referenced by:  bcval  14290
  Copyright terms: Public domain W3C validator
OSZAR »