Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-lpolN Structured version   Visualization version   GIF version

Definition df-lpolN 40982
Description: Define the set of all polarities of a left module or left vector space. A polarity is a kind of complementation operation on a subspace. The double polarity of a subspace is a closure operation. Based on Definition 3.2 of [Holland95] p. 214 for projective geometry polarities. For convenience, we open up the domain to include all vector subsets and not just subspaces, but any more restricted polarity can be converted to this one by taking the span of its argument. (Contributed by NM, 24-Nov-2014.)
Assertion
Ref Expression
df-lpolN LPol = (𝑤 ∈ V ↦ {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤)) ∣ ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
Distinct variable group:   𝑤,𝑜,𝑥,𝑦

Detailed syntax breakdown of Definition df-lpolN
StepHypRef Expression
1 clpoN 40981 . 2 class LPol
2 vw . . 3 setvar 𝑤
3 cvv 3463 . . 3 class V
42cv 1532 . . . . . . . 8 class 𝑤
5 cbs 17177 . . . . . . . 8 class Base
64, 5cfv 6541 . . . . . . 7 class (Base‘𝑤)
7 vo . . . . . . . 8 setvar 𝑜
87cv 1532 . . . . . . 7 class 𝑜
96, 8cfv 6541 . . . . . 6 class (𝑜‘(Base‘𝑤))
10 c0g 17418 . . . . . . . 8 class 0g
114, 10cfv 6541 . . . . . . 7 class (0g𝑤)
1211csn 4622 . . . . . 6 class {(0g𝑤)}
139, 12wceq 1533 . . . . 5 wff (𝑜‘(Base‘𝑤)) = {(0g𝑤)}
14 vx . . . . . . . . . . 11 setvar 𝑥
1514cv 1532 . . . . . . . . . 10 class 𝑥
1615, 6wss 3939 . . . . . . . . 9 wff 𝑥 ⊆ (Base‘𝑤)
17 vy . . . . . . . . . . 11 setvar 𝑦
1817cv 1532 . . . . . . . . . 10 class 𝑦
1918, 6wss 3939 . . . . . . . . 9 wff 𝑦 ⊆ (Base‘𝑤)
2015, 18wss 3939 . . . . . . . . 9 wff 𝑥𝑦
2116, 19, 20w3a 1084 . . . . . . . 8 wff (𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦)
2218, 8cfv 6541 . . . . . . . . 9 class (𝑜𝑦)
2315, 8cfv 6541 . . . . . . . . 9 class (𝑜𝑥)
2422, 23wss 3939 . . . . . . . 8 wff (𝑜𝑦) ⊆ (𝑜𝑥)
2521, 24wi 4 . . . . . . 7 wff ((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥))
2625, 17wal 1531 . . . . . 6 wff 𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥))
2726, 14wal 1531 . . . . 5 wff 𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥))
28 clsh 38475 . . . . . . . . 9 class LSHyp
294, 28cfv 6541 . . . . . . . 8 class (LSHyp‘𝑤)
3023, 29wcel 2098 . . . . . . 7 wff (𝑜𝑥) ∈ (LSHyp‘𝑤)
3123, 8cfv 6541 . . . . . . . 8 class (𝑜‘(𝑜𝑥))
3231, 15wceq 1533 . . . . . . 7 wff (𝑜‘(𝑜𝑥)) = 𝑥
3330, 32wa 394 . . . . . 6 wff ((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥)
34 clsa 38474 . . . . . . 7 class LSAtoms
354, 34cfv 6541 . . . . . 6 class (LSAtoms‘𝑤)
3633, 14, 35wral 3051 . . . . 5 wff 𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥)
3713, 27, 36w3a 1084 . . . 4 wff ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥))
38 clss 20817 . . . . . 6 class LSubSp
394, 38cfv 6541 . . . . 5 class (LSubSp‘𝑤)
406cpw 4596 . . . . 5 class 𝒫 (Base‘𝑤)
41 cmap 8841 . . . . 5 class m
4239, 40, 41co 7414 . . . 4 class ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤))
4337, 7, 42crab 3419 . . 3 class {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤)) ∣ ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥))}
442, 3, 43cmpt 5224 . 2 class (𝑤 ∈ V ↦ {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤)) ∣ ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
451, 44wceq 1533 1 wff LPol = (𝑤 ∈ V ↦ {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤)) ∣ ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
Colors of variables: wff setvar class
This definition is referenced by:  lpolsetN  40983
  Copyright terms: Public domain W3C validator
OSZAR »