![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-sn | Structured version Visualization version GIF version |
Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, see snprc 4718. For an alternate definition see dfsn2 4638. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
df-sn | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | csn 4625 | . 2 class {𝐴} |
3 | vx | . . . . 5 setvar 𝑥 | |
4 | 3 | cv 1533 | . . . 4 class 𝑥 |
5 | 4, 1 | wceq 1534 | . . 3 wff 𝑥 = 𝐴 |
6 | 5, 3 | cab 2705 | . 2 class {𝑥 ∣ 𝑥 = 𝐴} |
7 | 2, 6 | wceq 1534 | 1 wff {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
Colors of variables: wff setvar class |
This definition is referenced by: sneq 4635 elsng 4639 absn 4643 dfsn2ALT 4645 rabsssn 4667 csbsng 4709 pw0 4812 iunidOLD 5059 uniabio 6510 iotaval 6514 dfimafn2 6957 fnsnfvOLD 6973 suppvalbr 8164 snec 8793 fset0 8867 0map0sn0 8898 infmap2 10236 cf0 10269 cflecard 10271 brdom7disj 10549 brdom6disj 10550 vdwlem6 16949 hashbc0 16968 symgbas0 19337 pzriprnglem10 21410 pzriprnglem11 21411 psrbagsn 22001 ptcmplem2 23951 snclseqg 24014 nmoo0 30595 nmop0 31790 nmfn0 31791 disjabrex 32366 disjabrexf 32367 pstmfval 33492 hasheuni 33699 derang0 34774 dfiota3 35514 bj-nuliotaALT 36532 poimirlem28 37116 lineset 39206 abbi1sn 41702 frege54cor1c 43336 iotain 43845 csbsngVD 44323 dfaimafn2 46537 dfatsnafv2 46623 rnfdmpr 46652 |
Copyright terms: Public domain | W3C validator |