![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exlimi | Structured version Visualization version GIF version |
Description: Inference associated with 19.23 2199. See exlimiv 1925 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 10-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
exlimi.1 | ⊢ Ⅎ𝑥𝜓 |
exlimi.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimi | ⊢ (∃𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | 19.23 2199 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
3 | exlimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | mpgbi 1792 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1773 Ⅎwnf 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-12 2166 |
This theorem depends on definitions: df-bi 206 df-ex 1774 df-nf 1778 |
This theorem is referenced by: sbalex 2230 equsexv 2254 equs5av 2265 exlimih 2278 equs5aALT 2357 equs5eALT 2358 equsex 2411 exdistrf 2440 equs5a 2450 equs5e 2451 dfmoeu 2524 moanim 2608 euan 2609 moexexlem 2614 2eu6 2645 ceqsexOLD 3514 sbhypfOLD 3529 vtoclef 3540 vtoclgf 3547 vtoclg1f 3548 rspn0OLD 4347 reusv2lem1 5390 copsexgw 5484 copsexg 5485 copsex2gOLD 5488 rexopabb 5522 0nelopabOLD 5562 ralxpf 5841 dmcoss 5966 fv3 6908 opabiota 6974 oprabidw 7445 zfregcl 9615 scottex 9906 scott0 9907 dfac5lem5 10148 zfcndpow 10637 zfcndreg 10638 zfcndinf 10639 reclem2pr 11069 mreiincl 17573 brabgaf 32415 cnvoprabOLD 32519 bnj607 34576 bnj900 34589 exisym1 35937 exlimii 36337 bj-exlimmpi 36419 bj-exlimmpbi 36420 bj-exlimmpbir 36421 dihglblem5 40799 tworepnotupword 46307 eu2ndop1stv 46540 pgind 48232 |
Copyright terms: Public domain | W3C validator |