![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > falim | Structured version Visualization version GIF version |
Description: The truth value ⊥ implies anything. Also called the "principle of explosion", or "ex falso [sequitur]] quodlibet" (Latin for "from falsehood, anything [follows]]"). Dual statement of trud 1543. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.) |
Ref | Expression |
---|---|
falim | ⊢ (⊥ → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal 1547 | . 2 ⊢ ¬ ⊥ | |
2 | 1 | pm2.21i 119 | 1 ⊢ (⊥ → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊥wfal 1545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1536 df-fal 1546 |
This theorem is referenced by: falimd 1551 tbw-bijust 1692 tbw-negdf 1693 tbw-ax4 1697 merco1 1707 merco2 1730 ab0w 4374 csbprc 4407 ralf0 4514 ralnralall 4519 tgcgr4 28398 frgrregord013 30268 nalfal 35974 imsym1 35989 consym1 35991 dissym1 35992 unisym1 35994 exisym1 35995 subsym1 35998 bj-falor2 36149 bj-prmoore 36681 wl-2mintru2 37057 orfa1 37645 orfa2 37646 bifald 37647 botel 37664 lindslinindsimp2 47659 |
Copyright terms: Public domain | W3C validator |