MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imim2i Structured version   Visualization version   GIF version

Theorem imim2i 16
Description: Inference adding common antecedents in an implication. Inference associated with imim2 58. Its associated inference is syl 17. (Contributed by NM, 28-Dec-1992.)
Hypothesis
Ref Expression
imim2i.1 (𝜑𝜓)
Assertion
Ref Expression
imim2i ((𝜒𝜑) → (𝜒𝜓))

Proof of Theorem imim2i
StepHypRef Expression
1 imim2i.1 . . 3 (𝜑𝜓)
21a1i 11 . 2 (𝜒 → (𝜑𝜓))
32a2i 14 1 ((𝜒𝜑) → (𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  imim12i  62  imim3i  64  ja  186  imim21b  394  jcab  517  pm3.48  962  nanass  1504  nic-ax  1668  nic-axALT  1669  tbw-bijust  1693  merco1  1708  19.23v  1938  19.24  1982  hbsbwOLD  2162  sb4a  2475  2eu6  2648  axi5r  2691  ralrexbidOLD  3104  r19.36v  3180  ceqsal1t  3502  vtoclgft  3538  spcgft  3575  elabgt  3660  elabgtOLD  3661  mo2icl  3709  euind  3719  reu6  3721  reuind  3748  sbciegftOLD  3815  elpwunsn  4688  dfiin2g  5035  invdisj  5132  ssrel  5784  ssrelOLD  5785  dff3  7110  fnoprabg  7543  tfindsg  7865  findsg  7905  zfrep6  7958  tz7.48-1  8464  odi  8600  r1sdom  9798  kmlem6  10179  kmlem12  10185  zorng  10528  squeeze0  12148  xrsupexmnf  13317  xrinfmexpnf  13318  mptnn0fsuppd  13996  rexanre  15326  pmatcollpw2lem  22692  tgcnp  23170  lmcvg  23179  iblcnlem  25731  limcresi  25827  isch3  31064  disjexc  32396  cntmeas  33845  bnj900  34560  bnj1172  34632  bnj1174  34634  bnj1176  34636  gonarlem  35004  goalrlem  35006  axextdfeq  35393  hbimtg  35402  nn0prpw  35807  meran3  35897  waj-ax  35898  lukshef-ax2  35899  imsym1  35902  bj-peircestab  36028  bj-orim2  36031  bj-andnotim  36065  bj-ssbid2ALT  36139  bj-19.21bit  36167  bj-substax12  36198  bj-ceqsalt0  36362  bj-ceqsalt1  36363  wl-embant  36977  contrd  37570  ax12indi  38416  ltrnnid  39609  ismrc  42121  frege55lem1a  43296  frege55lem1b  43325  frege55lem1c  43346  frege92  43385  pm11.71  43834  exbir  43917  ax6e2ndeqVD  44348  ax6e2ndeqALT  44370  r19.36vf  44502  nn0sumshdiglemA  47692  nn0sumshdiglemB  47693  setrec2mpt  48128
  Copyright terms: Public domain W3C validator
OSZAR »