![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jao1i | Structured version Visualization version GIF version |
Description: Add a disjunct in the antecedent of an implication. (Contributed by Rodolfo Medina, 24-Sep-2010.) |
Ref | Expression |
---|---|
jao1i.1 | ⊢ (𝜓 → (𝜒 → 𝜑)) |
Ref | Expression |
---|---|
jao1i | ⊢ ((𝜑 ∨ 𝜓) → (𝜒 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ (𝜑 → (𝜒 → 𝜑)) | |
2 | jao1i.1 | . 2 ⊢ (𝜓 → (𝜒 → 𝜑)) | |
3 | 1, 2 | jaoi 856 | 1 ⊢ ((𝜑 ∨ 𝜓) → (𝜒 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 847 |
This theorem is referenced by: pm2.64 940 pm2.82 974 sorpssint 7738 preleqg 9639 ltlen 11346 elnnnn0b 12547 znnn0nn 12704 scshwfzeqfzo 14810 nn0enne 16354 dvdsprmpweqnn 16854 dvdsprmpweqle 16855 prmirred 21400 pmatcollpw3fi1 22703 2lgsoddprmlem3 27360 sltlend 27717 prtlem14 38346 |
Copyright terms: Public domain | W3C validator |