MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jao1i Structured version   Visualization version   GIF version

Theorem jao1i 857
Description: Add a disjunct in the antecedent of an implication. (Contributed by Rodolfo Medina, 24-Sep-2010.)
Hypothesis
Ref Expression
jao1i.1 (𝜓 → (𝜒𝜑))
Assertion
Ref Expression
jao1i ((𝜑𝜓) → (𝜒𝜑))

Proof of Theorem jao1i
StepHypRef Expression
1 ax-1 6 . 2 (𝜑 → (𝜒𝜑))
2 jao1i.1 . 2 (𝜓 → (𝜒𝜑))
31, 2jaoi 856 1 ((𝜑𝜓) → (𝜒𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 847
This theorem is referenced by:  pm2.64  940  pm2.82  974  sorpssint  7738  preleqg  9639  ltlen  11346  elnnnn0b  12547  znnn0nn  12704  scshwfzeqfzo  14810  nn0enne  16354  dvdsprmpweqnn  16854  dvdsprmpweqle  16855  prmirred  21400  pmatcollpw3fi1  22703  2lgsoddprmlem3  27360  sltlend  27717  prtlem14  38346
  Copyright terms: Public domain W3C validator
OSZAR »