![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon1d | Structured version Visualization version GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 28-Dec-2008.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
necon1d.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 = 𝐷)) |
Ref | Expression |
---|---|
necon1d | ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon1d.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝐶 = 𝐷)) | |
2 | nne 2940 | . . 3 ⊢ (¬ 𝐶 ≠ 𝐷 ↔ 𝐶 = 𝐷) | |
3 | 1, 2 | imbitrrdi 251 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝐶 ≠ 𝐷)) |
4 | 3 | necon4ad 2955 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1534 ≠ wne 2936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2937 |
This theorem is referenced by: disji 5125 mul02lem2 11415 mhpmulcl 22066 xblss2ps 24300 xblss2 24301 lgsne0 27261 h1datomi 31384 eigorthi 31640 disjif 32361 lineintmo 35747 poimirlem6 37093 poimirlem7 37094 2llnmat 38991 2lnat 39251 tendospcanN 40490 dihmeetlem13N 40786 dochkrshp 40853 remul02 41954 remul01 41956 sn-0tie0 41988 |
Copyright terms: Public domain | W3C validator |