MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1d Structured version   Visualization version   GIF version

Theorem necon1d 2958
Description: Contrapositive law deduction for inequality. (Contributed by NM, 28-Dec-2008.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon1d.1 (𝜑 → (𝐴𝐵𝐶 = 𝐷))
Assertion
Ref Expression
necon1d (𝜑 → (𝐶𝐷𝐴 = 𝐵))

Proof of Theorem necon1d
StepHypRef Expression
1 necon1d.1 . . 3 (𝜑 → (𝐴𝐵𝐶 = 𝐷))
2 nne 2940 . . 3 𝐶𝐷𝐶 = 𝐷)
31, 2imbitrrdi 251 . 2 (𝜑 → (𝐴𝐵 → ¬ 𝐶𝐷))
43necon4ad 2955 1 (𝜑 → (𝐶𝐷𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1534  wne 2936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2937
This theorem is referenced by:  disji  5125  mul02lem2  11415  mhpmulcl  22066  xblss2ps  24300  xblss2  24301  lgsne0  27261  h1datomi  31384  eigorthi  31640  disjif  32361  lineintmo  35747  poimirlem6  37093  poimirlem7  37094  2llnmat  38991  2lnat  39251  tendospcanN  40490  dihmeetlem13N  40786  dochkrshp  40853  remul02  41954  remul01  41956  sn-0tie0  41988
  Copyright terms: Public domain W3C validator
OSZAR »