![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfmo1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the at-most-one quantifier. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.) Adapt to new definition. (Revised by BJ, 1-Oct-2022.) |
Ref | Expression |
---|---|
nfmo1 | ⊢ Ⅎ𝑥∃*𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mo 2530 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
2 | nfa1 2141 | . . 3 ⊢ Ⅎ𝑥∀𝑥(𝜑 → 𝑥 = 𝑦) | |
3 | 2 | nfex 2313 | . 2 ⊢ Ⅎ𝑥∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) |
4 | 1, 3 | nfxfr 1848 | 1 ⊢ Ⅎ𝑥∃*𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1532 ∃wex 1774 Ⅎwnf 1778 ∃*wmo 2528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-10 2130 ax-11 2147 ax-12 2167 |
This theorem depends on definitions: df-bi 206 df-or 847 df-ex 1775 df-nf 1779 df-mo 2530 |
This theorem is referenced by: mo3 2554 nfeu1ALT 2579 moanmo 2614 moexexlem 2618 mopick2 2629 2mo 2640 2eu3 2645 nfrmo1 3403 mob 3711 morex 3713 wl-mo3t 37038 |
Copyright terms: Public domain | W3C validator |