MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmo1 Structured version   Visualization version   GIF version

Theorem nfmo1 2547
Description: Bound-variable hypothesis builder for the at-most-one quantifier. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.) Adapt to new definition. (Revised by BJ, 1-Oct-2022.)
Assertion
Ref Expression
nfmo1 𝑥∃*𝑥𝜑

Proof of Theorem nfmo1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-mo 2530 . 2 (∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 nfa1 2141 . . 3 𝑥𝑥(𝜑𝑥 = 𝑦)
32nfex 2313 . 2 𝑥𝑦𝑥(𝜑𝑥 = 𝑦)
41, 3nfxfr 1848 1 𝑥∃*𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1532  wex 1774  wnf 1778  ∃*wmo 2528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-10 2130  ax-11 2147  ax-12 2167
This theorem depends on definitions:  df-bi 206  df-or 847  df-ex 1775  df-nf 1779  df-mo 2530
This theorem is referenced by:  mo3  2554  nfeu1ALT  2579  moanmo  2614  moexexlem  2618  mopick2  2629  2mo  2640  2eu3  2645  nfrmo1  3403  mob  3711  morex  3713  wl-mo3t  37038
  Copyright terms: Public domain W3C validator
OSZAR »