MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmov Structured version   Visualization version   GIF version

Theorem nfmov 2549
Description: Bound-variable hypothesis builder for the at-most-one quantifier. See nfmo 2551 for a version without disjoint variable conditions but requiring ax-13 2366. (Contributed by NM, 9-Mar-1995.) (Revised by Wolf Lammen, 2-Oct-2023.)
Hypothesis
Ref Expression
nfmov.1 𝑥𝜑
Assertion
Ref Expression
nfmov 𝑥∃*𝑦𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem nfmov
StepHypRef Expression
1 nftru 1799 . . 3 𝑦
2 nfmov.1 . . . 4 𝑥𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
41, 3nfmodv 2548 . 2 (⊤ → Ⅎ𝑥∃*𝑦𝜑)
54mptru 1541 1 𝑥∃*𝑦𝜑
Colors of variables: wff setvar class
Syntax hints:  wtru 1535  wnf 1778  ∃*wmo 2527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-10 2130  ax-11 2147  ax-12 2164
This theorem depends on definitions:  df-bi 206  df-or 847  df-tru 1537  df-ex 1775  df-nf 1779  df-mo 2529
This theorem is referenced by:  mo3  2553  2moexv  2618  moexexvw  2619  2moswapv  2620  2euexv  2622  2mo  2639  nfrmow  3404  reusv1  5391  reusv2lem1  5392  mosubopt  5506  dffun6f  6560
  Copyright terms: Public domain W3C validator
OSZAR »