![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orcomd | Structured version Visualization version GIF version |
Description: Commutation of disjuncts in consequent. (Contributed by NM, 2-Dec-2010.) |
Ref | Expression |
---|---|
orcomd.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
orcomd | ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcomd.1 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
2 | orcom 869 | . 2 ⊢ ((𝜓 ∨ 𝜒) ↔ (𝜒 ∨ 𝜓)) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 847 |
This theorem is referenced by: olcd 873 orcnd 877 19.33b 1881 r19.30OLD 3116 elunnel2 4146 swopo 5595 fr2nr 5650 ordtri1 6396 ordequn 6466 ssonprc 7784 ordunpr 7823 ordunisuc2 7842 2oconcl 8517 erdisj 8771 ordtypelem7 9541 ackbij1lem18 10254 fin23lem19 10353 gchi 10641 inar1 10792 inatsk 10795 avgle 12478 nnm1nn0 12537 zle0orge1 12599 uzsplit 13599 fzospliti 13690 fzouzsplit 13693 znsqcld 14152 fz1f1o 15682 fnpr2ob 17533 odcl 19484 gexcl 19528 lssvs0or 20991 lspdisj 21006 lspsncv0 21027 mdetralt 22503 filconn 23780 limccnp 25813 dgrlt 26194 logreclem 26687 atans2 26856 basellem3 27008 sqff1o 27107 nosep2o 27608 elnns2 28202 tgcgrsub2 28392 legov3 28395 colline 28446 tglowdim2ln 28448 mirbtwnhl 28477 colmid 28485 symquadlem 28486 midexlem 28489 ragperp 28514 colperp 28526 midex 28534 oppperpex 28550 hlpasch 28553 colopp 28566 lmieu 28581 lmicom 28585 lmimid 28591 lmiisolem 28593 trgcopy 28601 cgracgr 28615 cgraswap 28617 cgracol 28625 hashecclwwlkn1 29880 xlt2addrd 32522 fprodex01 32582 ssmxidl 33177 lvecdim0 33290 minplyirred 33371 irredminply 33374 zarclssn 33464 esumcvgre 33700 ordtoplem 35909 ordcmp 35921 onsucuni3 36836 dvasin 37166 eqvreldisj 38075 lkrshp4 38569 2at0mat0 38987 trlator0 39633 dia2dimlem2 40527 dia2dimlem3 40528 dochkrshp 40848 dochkrshp4 40851 lcfl6 40962 lclkrlem2k 40979 hdmap14lem6 41335 hgmapval0 41354 sticksstones12a 41613 sticksstones13 41615 acongneg2 42370 unxpwdom3 42491 dflim5 42730 mnuprdlem1 43681 mnurndlem1 43690 disjinfi 44537 xrssre 44702 icccncfext 45247 wallispilem3 45427 fourierdlem93 45559 fourierdlem101 45567 nneop 47571 itsclinecirc0 47818 itsclinecirc0b 47819 itsclinecirc0in 47820 inlinecirc02plem 47831 inlinecirc02p 47832 |
Copyright terms: Public domain | W3C validator |