![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.35 | Structured version Visualization version GIF version |
Description: Theorem 19.35 of [Margaris] p. 90. This theorem is useful for moving an implication (in the form of the right-hand side) into the scope of a single existential quantifier. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 27-Jun-2014.) |
Ref | Expression |
---|---|
19.35 | ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.27 42 | . . . 4 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
2 | 1 | aleximi 1827 | . . 3 ⊢ (∀𝑥𝜑 → (∃𝑥(𝜑 → 𝜓) → ∃𝑥𝜓)) |
3 | 2 | com12 32 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)) |
4 | exnal 1822 | . . . 4 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) | |
5 | pm2.21 123 | . . . . 5 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
6 | 5 | eximi 1830 | . . . 4 ⊢ (∃𝑥 ¬ 𝜑 → ∃𝑥(𝜑 → 𝜓)) |
7 | 4, 6 | sylbir 234 | . . 3 ⊢ (¬ ∀𝑥𝜑 → ∃𝑥(𝜑 → 𝜓)) |
8 | exa1 1833 | . . 3 ⊢ (∃𝑥𝜓 → ∃𝑥(𝜑 → 𝜓)) | |
9 | 7, 8 | ja 186 | . 2 ⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑 → 𝜓)) |
10 | 3, 9 | impbii 208 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1532 ∃wex 1774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 |
This theorem depends on definitions: df-bi 206 df-ex 1775 |
This theorem is referenced by: 19.35i 1874 19.35ri 1875 19.25 1876 19.43 1878 nfimd 1890 19.36imvOLD 1942 19.37imv 1944 speimfwALT 1961 19.39 1981 19.24 1982 19.36v 1984 19.37v 1988 19.36 2219 19.37 2221 spimt 2381 grothprim 10852 bj-nfimt 36109 bj-nnfim 36218 bj-19.36im 36243 bj-19.37im 36244 bj-spimt2 36257 bj-spimtv 36266 |
Copyright terms: Public domain | W3C validator |