![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exnal | Structured version Visualization version GIF version |
Description: Existential quantification of negation is equivalent to negation of universal quantification. Dual of alnex 1776. See also the dual pair df-ex 1775 / alex 1821. Theorem 19.14 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
exnal | ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alex 1821 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
2 | 1 | con2bii 356 | 1 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1532 ∃wex 1774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 |
This theorem depends on definitions: df-bi 206 df-ex 1775 |
This theorem is referenced by: alexn 1840 nfnbi 1850 exanali 1855 19.35 1873 19.30 1877 nfeqf2 2371 nabbib 3035 r2exlem 3133 spc3gv 3590 vn0 4341 notzfaus 5367 dtruALT2 5374 dvdemo1 5377 dtruALT 5392 eunex 5394 reusv2lem2 5403 dtru 5442 dtruOLD 5447 brprcneu 6891 brprcneuALT 6892 dffv2 6997 zfcndpow 10659 hashfun 14454 nmo 32418 bnj1304 34664 bnj1253 34862 axrepprim 35524 axunprim 35525 axregprim 35527 axinfprim 35528 axacprim 35529 dftr6 35573 brtxpsd 35718 elfuns 35739 dfrdg4 35775 relowlpssretop 37071 onsupmaxb 42904 clsk3nimkb 43707 expandexn 43963 vk15.4j 44204 vk15.4jVD 44590 alneu 46737 |
Copyright terms: Public domain | W3C validator |