MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exnal Structured version   Visualization version   GIF version

Theorem exnal 1822
Description: Existential quantification of negation is equivalent to negation of universal quantification. Dual of alnex 1776. See also the dual pair df-ex 1775 / alex 1821. Theorem 19.14 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
Assertion
Ref Expression
exnal (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑)

Proof of Theorem exnal
StepHypRef Expression
1 alex 1821 . 2 (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑)
21con2bii 356 1 (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1532  wex 1774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804
This theorem depends on definitions:  df-bi 206  df-ex 1775
This theorem is referenced by:  alexn  1840  nfnbi  1850  exanali  1855  19.35  1873  19.30  1877  nfeqf2  2371  nabbib  3035  r2exlem  3133  spc3gv  3590  vn0  4341  notzfaus  5367  dtruALT2  5374  dvdemo1  5377  dtruALT  5392  eunex  5394  reusv2lem2  5403  dtru  5442  dtruOLD  5447  brprcneu  6891  brprcneuALT  6892  dffv2  6997  zfcndpow  10659  hashfun  14454  nmo  32418  bnj1304  34664  bnj1253  34862  axrepprim  35524  axunprim  35525  axregprim  35527  axinfprim  35528  axacprim  35529  dftr6  35573  brtxpsd  35718  elfuns  35739  dfrdg4  35775  relowlpssretop  37071  onsupmaxb  42904  clsk3nimkb  43707  expandexn  43963  vk15.4j  44204  vk15.4jVD  44590  alneu  46737
  Copyright terms: Public domain W3C validator
OSZAR »