Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axacprim Structured version   Visualization version   GIF version

Theorem axacprim 35512
Description: ax-ac 10502 without distinct variable conditions or defined symbols. (New usage is discouraged.) (Contributed by Scott Fenton, 26-Oct-2010.)
Assertion
Ref Expression
axacprim ¬ ∀𝑥 ¬ ∀𝑦𝑧(∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))))

Proof of Theorem axacprim
StepHypRef Expression
1 axacnd 10655 . 2 𝑥𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤))
2 df-an 395 . . . . . . 7 ((𝑦𝑧𝑧𝑤) ↔ ¬ (𝑦𝑧 → ¬ 𝑧𝑤))
32albii 1814 . . . . . 6 (∀𝑥(𝑦𝑧𝑧𝑤) ↔ ∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤))
4 anass 467 . . . . . . . . . . . . . 14 (((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ (𝑦𝑧 ∧ (𝑧𝑤 ∧ (𝑦𝑤𝑤𝑥))))
5 annim 402 . . . . . . . . . . . . . . . 16 ((𝑧𝑤 ∧ ¬ (𝑦𝑤 → ¬ 𝑤𝑥)) ↔ ¬ (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥)))
6 pm4.63 396 . . . . . . . . . . . . . . . . 17 (¬ (𝑦𝑤 → ¬ 𝑤𝑥) ↔ (𝑦𝑤𝑤𝑥))
76anbi2i 621 . . . . . . . . . . . . . . . 16 ((𝑧𝑤 ∧ ¬ (𝑦𝑤 → ¬ 𝑤𝑥)) ↔ (𝑧𝑤 ∧ (𝑦𝑤𝑤𝑥)))
85, 7bitr3i 276 . . . . . . . . . . . . . . 15 (¬ (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥)) ↔ (𝑧𝑤 ∧ (𝑦𝑤𝑤𝑥)))
98anbi2i 621 . . . . . . . . . . . . . 14 ((𝑦𝑧 ∧ ¬ (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) ↔ (𝑦𝑧 ∧ (𝑧𝑤 ∧ (𝑦𝑤𝑤𝑥))))
10 annim 402 . . . . . . . . . . . . . 14 ((𝑦𝑧 ∧ ¬ (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) ↔ ¬ (𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))
114, 9, 103bitr2i 298 . . . . . . . . . . . . 13 (((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ ¬ (𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))
1211exbii 1843 . . . . . . . . . . . 12 (∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ ∃𝑤 ¬ (𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))
13 exnal 1822 . . . . . . . . . . . 12 (∃𝑤 ¬ (𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) ↔ ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))
1412, 13bitri 274 . . . . . . . . . . 11 (∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))
1514bibi1i 337 . . . . . . . . . 10 ((∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤) ↔ (¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) ↔ 𝑦 = 𝑤))
16 dfbi1 212 . . . . . . . . . 10 ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) ↔ 𝑦 = 𝑤) ↔ ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))))
1715, 16bitri 274 . . . . . . . . 9 ((∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤) ↔ ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))))
1817albii 1814 . . . . . . . 8 (∀𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤) ↔ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))))
1918exbii 1843 . . . . . . 7 (∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤) ↔ ∃𝑤𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))))
20 df-ex 1775 . . . . . . 7 (∃𝑤𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))) ↔ ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))))
2119, 20bitri 274 . . . . . 6 (∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤) ↔ ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))))
223, 21imbi12i 349 . . . . 5 ((∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)) ↔ (∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥)))))))
23222albii 1815 . . . 4 (∀𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)) ↔ ∀𝑦𝑧(∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥)))))))
2423exbii 1843 . . 3 (∃𝑥𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)) ↔ ∃𝑥𝑦𝑧(∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥)))))))
25 df-ex 1775 . . 3 (∃𝑥𝑦𝑧(∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥)))))) ↔ ¬ ∀𝑥 ¬ ∀𝑦𝑧(∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥)))))))
2624, 25bitri 274 . 2 (∃𝑥𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)) ↔ ¬ ∀𝑥 ¬ ∀𝑦𝑧(∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥)))))))
271, 26mpbi 229 1 ¬ ∀𝑥 ¬ ∀𝑦𝑧(∀𝑥 ¬ (𝑦𝑧 → ¬ 𝑧𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦𝑧 → (𝑧𝑤 → (𝑦𝑤 → ¬ 𝑤𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wal 1532  wex 1774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-13 2366  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433  ax-reg 9635  ax-ac 10502
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-br 5154  df-opab 5216  df-eprel 5586  df-fr 5637
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »