MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi1i Structured version   Visualization version   GIF version

Theorem bibi1i 337
Description: Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 26-May-1993.)
Hypothesis
Ref Expression
bibi2i.1 (𝜑𝜓)
Assertion
Ref Expression
bibi1i ((𝜑𝜒) ↔ (𝜓𝜒))

Proof of Theorem bibi1i
StepHypRef Expression
1 bicom 221 . 2 ((𝜑𝜒) ↔ (𝜒𝜑))
2 bibi2i.1 . . 3 (𝜑𝜓)
32bibi2i 336 . 2 ((𝜒𝜑) ↔ (𝜒𝜓))
4 bicom 221 . 2 ((𝜒𝜓) ↔ (𝜓𝜒))
51, 3, 43bitri 296 1 ((𝜑𝜒) ↔ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  bibi12i  338  biluk  384  biadaniALT  819  nanass  1504  xorass  1509  hadbi  1592  hadcoma  1593  hadnot  1596  sbrbis  2300  csbied  3930  dfss2  3965  ssequn1  4181  ab0w  4378  asymref  6128  aceq1  10160  aceq0  10161  zfac  10503  zfcndac  10662  hashreprin  34466  axacprim  35529  eliminable-abeqv  36572  wl-3xorcoma  37185  wl-3xornot  37188  redundpbi1  38329  onsupmaxb  42904  rp-fakeanorass  43180  ichn  47028  dfich2  47030
  Copyright terms: Public domain W3C validator
OSZAR »