MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-an Structured version   Visualization version   GIF version

Definition df-an 395
Description: Define conjunction (logical "and"). Definition of [Margaris] p. 49. When both the left and right operand are true, the result is true; when either is false, the result is false. For example, it is true that (2 = 2 ∧ 3 = 3). After we define the constant true (df-tru 1537) and the constant false (df-fal 1547), we will be able to prove these truth table values: ((⊤ ∧ ⊤) ↔ ⊤) (truantru 1567), ((⊤ ∧ ⊥) ↔ ⊥) (truanfal 1568), ((⊥ ∧ ⊤) ↔ ⊥) (falantru 1569), and ((⊥ ∧ ⊥) ↔ ⊥) (falanfal 1570).

This is our first use of the biconditional connective in a definition; we use the biconditional connective in place of the traditional "<=def=>", which means the same thing, except that we can manipulate the biconditional connective directly in proofs rather than having to rely on an informal definition substitution rule. Note that if we mechanically substitute ¬ (𝜑 → ¬ 𝜓) for (𝜑𝜓), we end up with an instance of previously proved theorem biid 260. This is the justification for the definition, along with the fact that it introduces a new symbol . Contrast with (df-or 846), (wi 4), (df-nan 1486), and (df-xor 1506). (Contributed by NM, 5-Jan-1993.)

Assertion
Ref Expression
df-an ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))

Detailed syntax breakdown of Definition df-an
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 wps . . 3 wff 𝜓
31, 2wa 394 . 2 wff (𝜑𝜓)
42wn 3 . . . 4 wff ¬ 𝜓
51, 4wi 4 . . 3 wff (𝜑 → ¬ 𝜓)
65wn 3 . 2 wff ¬ (𝜑 → ¬ 𝜓)
73, 6wb 205 1 wff ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))
Colors of variables: wff setvar class
This definition is referenced by:  pm4.63  396  imnan  398  imp  405  ex  411  dfbi2  473  pm5.32  572  pm4.54  984  nfand  1893  nfan1  2189  dfac5lem4  10169  kmlem3  10195  nolt02o  27725  axrepprim  35507  axunprim  35508  axregprim  35510  axinfprim  35511  axacprim  35512  aks6d1c6lem3  41853  orddif0suc  42917  dfxor4  43416  df3an2  43419  expandan  43945  ismnuprim  43951  pm11.52  44044
  Copyright terms: Public domain W3C validator
OSZAR »