MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant2r Structured version   Visualization version   GIF version

Theorem 3adant2r 1177
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant2r ((𝜑 ∧ (𝜓𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem 3adant2r
StepHypRef Expression
1 simpl 482 . 2 ((𝜓𝜏) → 𝜓)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an2 1162 1 ((𝜑 ∧ (𝜓𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  ltdiv23  12136  lediv23  12137  divalglem8  16377  isdrngd  20657  isdrngdOLD  20659  deg1tm  26067  ax5seglem1  28752  ax5seglem2  28753  nvaddsub4  30480  nmoub2i  30597  cdleme21at  39801  cdleme42f  39953  trlcoabs2N  40195  tendoplcl2  40251  tendopltp  40253  cdlemk2  40305  cdlemk8  40311  cdlemk9  40312  cdlemk9bN  40313  cdleml8  40456  dihglblem3N  40768  dihglblem3aN  40769  fourierdlem42  45537  lincscm  47498  itsclc0yqsol  47837
  Copyright terms: Public domain W3C validator
OSZAR »