![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi123i | Structured version Visualization version GIF version |
Description: Join 3 biconditionals with conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
bi3.1 | ⊢ (𝜑 ↔ 𝜓) |
bi3.2 | ⊢ (𝜒 ↔ 𝜃) |
bi3.3 | ⊢ (𝜏 ↔ 𝜂) |
Ref | Expression |
---|---|
3anbi123i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi3.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | bi3.2 | . . . 4 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | anbi12i 627 | . . 3 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
4 | bi3.3 | . . 3 ⊢ (𝜏 ↔ 𝜂) | |
5 | 3, 4 | anbi12i 627 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜏) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) |
6 | df-3an 1087 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜏)) | |
7 | df-3an 1087 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) | |
8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3anbi1i 1155 3anbi2i 1156 3anbi3i 1157 syl3anb 1159 an33rean 1480 cadnot 1609 f13dfv 7283 poxp2 8148 xpord3lem 8154 poxp3 8155 xpord3pred 8157 axgroth5 10848 axgroth6 10852 cotr2g 14956 cbvprod 15892 isstruct 17121 pmtr3ncomlem1 19428 opprsubg 20291 addscut 27908 mulscut 28045 issubgr 29097 nbgrsym 29189 nb3grpr 29208 cplgr3v 29261 usgr2pthlem 29590 umgr2adedgwlk 29769 umgrwwlks2on 29781 elwspths2spth 29791 clwwlkccat 29813 clwlkclwwlk 29825 3wlkdlem8 29990 frgr3v 30098 or3dir 32273 unelldsys 33777 bnj156 34359 bnj206 34362 bnj887 34396 bnj121 34501 bnj130 34505 bnj605 34538 bnj581 34539 brpprod3b 35483 brapply 35534 brrestrict 35545 dfrdg4 35547 brsegle 35704 dfeqvrels3 38061 tendoset 40232 |
Copyright terms: Public domain | W3C validator |