![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anrot | Structured version Visualization version GIF version |
Description: Rotation law for triple conjunction. (Contributed by NM, 8-Apr-1994.) (Proof shortened by Wolf Lammen, 9-Jun-2022.) |
Ref | Expression |
---|---|
3anrot | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancoma 1096 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) | |
2 | 3ancomb 1097 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) | |
3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3anrev 1099 wefrc 5666 ordelord 6385 f13dfv 7277 fr3nr 7768 omword 8584 nnmcan 8648 modmulconst 16258 ncoprmlnprm 16693 issubmndb 18750 pmtr3ncomlem1 19421 srgrmhm 20155 isphld 21579 ordtbaslem 23085 xmetpsmet 24247 comet 24415 cphassr 25133 srabn 25281 lgsdi 27260 divsclw 28087 colopp 28566 colinearalglem2 28711 umgr2edg1 29017 nb3grpr 29188 nb3grpr2 29189 nb3gr2nb 29190 cplgr3v 29241 frgr3v 30078 dipassr 30649 bnj170 34323 bnj290 34335 bnj545 34520 bnj571 34531 bnj594 34537 brapply 35528 brrestrict 35539 dfrdg4 35541 cgrid2 35593 cgr3permute3 35637 cgr3permute2 35639 cgr3permute4 35640 cgr3permute5 35641 colinearperm1 35652 colinearperm3 35653 colinearperm2 35654 colinearperm4 35655 colinearperm5 35656 colinearxfr 35665 endofsegid 35675 colinbtwnle 35708 broutsideof2 35712 dmncan2 37544 isltrn2N 39587 oeord2com 42734 uunTT1p2 44228 uunT11p1 44230 uunT12p2 44234 uunT12p4 44236 3anidm12p2 44240 uun2221p1 44247 en3lplem2VD 44277 lincvalpr 47480 alimp-no-surprise 48208 |
Copyright terms: Public domain | W3C validator |