MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad5antlr Structured version   Visualization version   GIF version

Theorem ad5antlr 734
Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.)
Hypothesis
Ref Expression
ad2ant.1 (𝜑𝜓)
Assertion
Ref Expression
ad5antlr ((((((𝜒𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓)

Proof of Theorem ad5antlr
StepHypRef Expression
1 ad2ant.1 . . 3 (𝜑𝜓)
21adantl 481 . 2 ((𝜒𝜑) → 𝜓)
32ad4antr 731 1 ((((((𝜒𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  simp-5r  785  fimaproj  8134  restmetu  24472  foresf1o  32293  2ndresdju  32428  nn0xmulclb  32535  isdrng4  32956  fracfld  32988  elrspunidl  33138  elrspunsn  33139  rhmpreimaprmidl  33161  fedgmul  33319  locfinreflem  33435  pstmxmet  33492  satfdmlem  34972  mblfinlem3  37126  itg2gt0cn  37142  dffltz  42052  pell1234qrmulcl  42269  suplesup  44715  limclner  45033  bgoldbtbnd  47143  gricushgr  47177
  Copyright terms: Public domain W3C validator
OSZAR »