![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > al2imi | Structured version Visualization version GIF version |
Description: Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
al2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
al2imi | ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | al2im 1808 | . 2 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) | |
2 | al2imi.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | mpg 1791 | 1 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1789 ax-4 1803 |
This theorem is referenced by: alanimi 1810 alimdh 1811 albi 1812 aleximi 1826 19.33b 1880 aevlem0 2049 sbi1 2066 axc16g 2246 axc11r 2359 axc10 2378 axc15 2415 sb2 2472 moim 2532 2eu6 2645 ral2imi 3075 ceqsalt 3496 elabgt 3653 elabgtOLD 3654 sstr2 3979 ssralv 4041 difin0ss 4364 axprlem2 5418 hbntg 35457 bj-2alim 36143 bj-cbvalimt 36171 bj-axc10v 36326 bj-sblem1 36375 bj-sblem2 36376 bj-ceqsalt0 36418 bj-ceqsalt1 36419 wl-spae 37044 wl-aetr 37052 wl-axc11r 37053 wl-aleq 37058 wl-nfeqfb 37059 axc11-o 38478 pm10.57 43872 2al2imi 43874 19.41rg 44053 hbntal 44056 |
Copyright terms: Public domain | W3C validator |