![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alanimi | Structured version Visualization version GIF version |
Description: Variant of al2imi 1809 with conjunctive antecedent. (Contributed by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
alanimi.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
alanimi | ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alanimi.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 411 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 2 | al2imi 1809 | . 2 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
4 | 3 | imp 405 | 1 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∀wal 1531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: 19.26 1865 alsyl 1888 ax13 2368 nfeqf 2374 darapti 2672 axextmo 2700 vtoclgft 3530 euind 3716 reuind 3745 sbeqalb 3841 bm1.3ii 5303 trin2 6130 ssfi 9197 bj-nnfan 36340 bj-cbv3ta 36378 bj-bm1.3ii 36658 mpobi123f 37750 mptbi12f 37754 cotrintab 43156 albitr 43912 2alanimi 43921 ichan 46902 |
Copyright terms: Public domain | W3C validator |