MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alanimi Structured version   Visualization version   GIF version

Theorem alanimi 1810
Description: Variant of al2imi 1809 with conjunctive antecedent. (Contributed by Andrew Salmon, 8-Jun-2011.)
Hypothesis
Ref Expression
alanimi.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
alanimi ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒)

Proof of Theorem alanimi
StepHypRef Expression
1 alanimi.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 411 . . 3 (𝜑 → (𝜓𝜒))
32al2imi 1809 . 2 (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
43imp 405 1 ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wal 1531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803
This theorem depends on definitions:  df-bi 206  df-an 395
This theorem is referenced by:  19.26  1865  alsyl  1888  ax13  2368  nfeqf  2374  darapti  2672  axextmo  2700  vtoclgft  3530  euind  3716  reuind  3745  sbeqalb  3841  bm1.3ii  5303  trin2  6130  ssfi  9197  bj-nnfan  36340  bj-cbv3ta  36378  bj-bm1.3ii  36658  mpobi123f  37750  mptbi12f  37754  cotrintab  43156  albitr  43912  2alanimi  43921  ichan  46902
  Copyright terms: Public domain W3C validator
OSZAR »