Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dfnnf3 Structured version   Visualization version   GIF version

Theorem bj-dfnnf3 36234
Description: Alternate definition of nonfreeness when sp 2172 is available. (Contributed by BJ, 28-Jul-2023.) The proof should not rely on df-nf 1779. (Proof modification is discouraged.)
Assertion
Ref Expression
bj-dfnnf3 (Ⅎ'𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))

Proof of Theorem bj-dfnnf3
StepHypRef Expression
1 bj-nnfea 36211 . 2 (Ⅎ'𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑))
2 bj-19.21bit 36167 . . 3 ((∃𝑥𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑𝜑))
3 bj-19.23bit 36168 . . 3 ((∃𝑥𝜑 → ∀𝑥𝜑) → (𝜑 → ∀𝑥𝜑))
4 df-bj-nnf 36201 . . 3 (Ⅎ'𝑥𝜑 ↔ ((∃𝑥𝜑𝜑) ∧ (𝜑 → ∀𝑥𝜑)))
52, 3, 4sylanbrc 582 . 2 ((∃𝑥𝜑 → ∀𝑥𝜑) → Ⅎ'𝑥𝜑)
61, 5impbii 208 1 (Ⅎ'𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1532  wex 1774  Ⅎ'wnnf 36200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-12 2167
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1775  df-bj-nnf 36201
This theorem is referenced by:  bj-nfnnfTEMP  36235
  Copyright terms: Public domain W3C validator
OSZAR »