![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj923 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj923.1 | ⊢ 𝐷 = (ω ∖ {∅}) |
Ref | Expression |
---|---|
bnj923 | ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 4123 | . 2 ⊢ (𝑛 ∈ (ω ∖ {∅}) → 𝑛 ∈ ω) | |
2 | bnj923.1 | . 2 ⊢ 𝐷 = (ω ∖ {∅}) | |
3 | 1, 2 | eleq2s 2843 | 1 ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∖ cdif 3941 ∅c0 4322 {csn 4630 ωcom 7871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3463 df-dif 3947 |
This theorem is referenced by: bnj1098 34545 bnj544 34656 bnj546 34658 bnj594 34674 bnj580 34675 bnj966 34706 bnj967 34707 bnj970 34709 bnj1001 34721 bnj1053 34738 bnj1071 34739 bnj1118 34746 bnj1128 34752 bnj1145 34755 |
Copyright terms: Public domain | W3C validator |