![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvald | Structured version Visualization version GIF version |
Description: Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2446. Usage of this theorem is discouraged because it depends on ax-13 2367. See cbvaldw 2330 for a version with 𝑥, 𝑦 disjoint, not depending on ax-13 2367. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvald.1 | ⊢ Ⅎ𝑦𝜑 |
cbvald.2 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
cbvald.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
Ref | Expression |
---|---|
cbvald | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1910 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | cbvald.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
3 | cbvald.2 | . 2 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
4 | nfvd 1911 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
5 | cbvald.3 | . 2 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
6 | 1, 2, 3, 4, 5 | cbv2 2398 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1532 Ⅎwnf 1778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-11 2147 ax-12 2167 ax-13 2367 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-ex 1775 df-nf 1779 |
This theorem is referenced by: cbvexd 2403 cbvaldva 2404 axextnd 10614 axrepndlem1 10615 axunndlem1 10618 axpowndlem2 10621 axpowndlem3 10622 axpowndlem4 10623 axregndlem2 10626 axregnd 10627 axinfnd 10629 axacndlem5 10634 axacnd 10635 axextdist 35395 distel 35399 wl-sb8eut 37045 |
Copyright terms: Public domain | W3C validator |