![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coeq2i | Structured version Visualization version GIF version |
Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
Ref | Expression |
---|---|
coeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
coeq2i | ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | coeq2 5860 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∘ ccom 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ss 3962 df-br 5149 df-opab 5211 df-co 5686 |
This theorem is referenced by: coeq12i 5865 cocnvcnv2 6262 co01 6265 dfpo2 6300 fcoi1 6769 f1ofvswap 7312 dftpos2 8247 tposco 8261 cottrcl 9742 canthp1 10677 cats1co 14839 isoval 17747 mvdco 19404 evlsval 22039 evl1fval1lem 22258 evl1var 22264 pf1ind 22283 rhmply1vr1 22317 rhmply1vsca 22318 imasdsf1olem 24309 hoico1 31622 hoid1i 31655 pjclem1 32061 pjclem3 32063 pjci 32066 cycpmconjv 32920 cycpmconjs 32934 poimirlem9 37172 cdlemk45 40489 cononrel1 43089 trclubgNEW 43113 trclrelexplem 43206 relexpaddss 43213 cotrcltrcl 43220 cortrcltrcl 43235 corclrtrcl 43236 cotrclrcl 43237 cortrclrcl 43238 cotrclrtrcl 43239 cortrclrtrcl 43240 brco3f1o 43528 clsneibex 43597 neicvgbex 43607 subsaliuncl 45809 meadjiun 45917 fundcmpsurinjimaid 46814 |
Copyright terms: Public domain | W3C validator |