![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-eu | Structured version Visualization version GIF version |
Description: Define the existential
uniqueness quantifier. This expresses unique
existence, or existential uniqueness, which is the conjunction of
existence (df-ex 1775) and uniqueness (df-mo 2529). The expression
∃!𝑥𝜑 is read "there exists exactly
one 𝑥 such that 𝜑 " or
"there exists a unique 𝑥 such that 𝜑". This is also
called the
"uniqueness quantifier" but that expression is also used for the
at-most-one quantifier df-mo 2529, therefore we avoid that ambiguous name.
Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2601, eu2 2600, eu3v 2559, and eu6 2563. As for double unique existence, beware that the expression ∃!𝑥∃!𝑦𝜑 means "there exists a unique 𝑥 such that there exists a unique 𝑦 such that 𝜑 " which is a weaker property than "there exists exactly one 𝑥 and one 𝑦 such that 𝜑 " (see 2eu4 2645). (Contributed by NM, 12-Aug-1993.) Make this the definition (which used to be eu6 2563, while this definition was then proved as dfeu 2584). (Revised by BJ, 30-Sep-2022.) |
Ref | Expression |
---|---|
df-eu | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | 1, 2 | weu 2557 | . 2 wff ∃!𝑥𝜑 |
4 | 1, 2 | wex 1774 | . . 3 wff ∃𝑥𝜑 |
5 | 1, 2 | wmo 2527 | . . 3 wff ∃*𝑥𝜑 |
6 | 4, 5 | wa 395 | . 2 wff (∃𝑥𝜑 ∧ ∃*𝑥𝜑) |
7 | 3, 6 | wb 205 | 1 wff (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: eu3v 2559 euex 2566 eumo 2567 exmoeub 2569 moeuex 2571 eubi 2573 eubii 2574 nfeu1ALT 2578 nfeud2 2579 nfeudw 2580 cbveuvw 2595 cbveuw 2596 cbveuALT 2599 eu2 2600 eu4 2606 2euswapv 2621 2euexv 2622 2exeuv 2623 2euex 2632 2euswap 2636 2exeu 2637 2eu4 2645 reu5 3373 eueq 3701 reuss2 4311 n0moeu 4352 reusv2lem1 5392 funcnv3 6617 fnres 6676 mptfnf 6684 fnopabg 6686 brprcneu 6881 brprcneuALT 6882 dff3 7104 finnisoeu 10128 dfac2b 10145 recmulnq 10979 uptx 23516 hausflf2 23889 nosupno 27623 nosupfv 27626 noinfno 27638 noinffv 27641 adjeu 31686 bnj151 34444 bnj600 34486 bj-eu3f 36254 wl-euae 36920 onsucf1olem 42622 eu0 42873 fzisoeu 44605 ellimciota 44925 euabsneu 46333 iota0ndef 46344 aiota0ndef 46400 reutruALT 47800 mo0sn 47809 thincn0eu 47961 |
Copyright terms: Public domain | W3C validator |