MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recmulnq Structured version   Visualization version   GIF version

Theorem recmulnq 11007
Description: Relationship between reciprocal and multiplication on positive fractions. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.)
Assertion
Ref Expression
recmulnq (𝐴Q → ((*Q𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q))

Proof of Theorem recmulnq
Dummy variables 𝑥 𝑦 𝑠 𝑟 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6914 . . . 4 (*Q𝐴) ∈ V
21a1i 11 . . 3 (𝐴Q → (*Q𝐴) ∈ V)
3 eleq1 2814 . . 3 ((*Q𝐴) = 𝐵 → ((*Q𝐴) ∈ V ↔ 𝐵 ∈ V))
42, 3syl5ibcom 244 . 2 (𝐴Q → ((*Q𝐴) = 𝐵𝐵 ∈ V))
5 id 22 . . . . . 6 ((𝐴 ·Q 𝐵) = 1Q → (𝐴 ·Q 𝐵) = 1Q)
6 1nq 10971 . . . . . 6 1QQ
75, 6eqeltrdi 2834 . . . . 5 ((𝐴 ·Q 𝐵) = 1Q → (𝐴 ·Q 𝐵) ∈ Q)
8 mulnqf 10992 . . . . . . 7 ·Q :(Q × Q)⟶Q
98fdmi 6739 . . . . . 6 dom ·Q = (Q × Q)
10 0nnq 10967 . . . . . 6 ¬ ∅ ∈ Q
119, 10ndmovrcl 7612 . . . . 5 ((𝐴 ·Q 𝐵) ∈ Q → (𝐴Q𝐵Q))
127, 11syl 17 . . . 4 ((𝐴 ·Q 𝐵) = 1Q → (𝐴Q𝐵Q))
13 elex 3482 . . . 4 (𝐵Q𝐵 ∈ V)
1412, 13simpl2im 502 . . 3 ((𝐴 ·Q 𝐵) = 1Q𝐵 ∈ V)
1514a1i 11 . 2 (𝐴Q → ((𝐴 ·Q 𝐵) = 1Q𝐵 ∈ V))
16 oveq1 7431 . . . . 5 (𝑥 = 𝐴 → (𝑥 ·Q 𝑦) = (𝐴 ·Q 𝑦))
1716eqeq1d 2728 . . . 4 (𝑥 = 𝐴 → ((𝑥 ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝑦) = 1Q))
18 oveq2 7432 . . . . 5 (𝑦 = 𝐵 → (𝐴 ·Q 𝑦) = (𝐴 ·Q 𝐵))
1918eqeq1d 2728 . . . 4 (𝑦 = 𝐵 → ((𝐴 ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝐵) = 1Q))
20 nqerid 10976 . . . . . . . . . 10 (𝑥Q → ([Q]‘𝑥) = 𝑥)
21 relxp 5700 . . . . . . . . . . . 12 Rel (N × N)
22 elpqn 10968 . . . . . . . . . . . 12 (𝑥Q𝑥 ∈ (N × N))
23 1st2nd 8053 . . . . . . . . . . . 12 ((Rel (N × N) ∧ 𝑥 ∈ (N × N)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2421, 22, 23sylancr 585 . . . . . . . . . . 11 (𝑥Q𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2524fveq2d 6905 . . . . . . . . . 10 (𝑥Q → ([Q]‘𝑥) = ([Q]‘⟨(1st𝑥), (2nd𝑥)⟩))
2620, 25eqtr3d 2768 . . . . . . . . 9 (𝑥Q𝑥 = ([Q]‘⟨(1st𝑥), (2nd𝑥)⟩))
2726oveq1d 7439 . . . . . . . 8 (𝑥Q → (𝑥 ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)) = (([Q]‘⟨(1st𝑥), (2nd𝑥)⟩) ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)))
28 mulerpq 11000 . . . . . . . 8 (([Q]‘⟨(1st𝑥), (2nd𝑥)⟩) ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)) = ([Q]‘(⟨(1st𝑥), (2nd𝑥)⟩ ·pQ ⟨(2nd𝑥), (1st𝑥)⟩))
2927, 28eqtrdi 2782 . . . . . . 7 (𝑥Q → (𝑥 ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)) = ([Q]‘(⟨(1st𝑥), (2nd𝑥)⟩ ·pQ ⟨(2nd𝑥), (1st𝑥)⟩)))
30 xp1st 8035 . . . . . . . . . . 11 (𝑥 ∈ (N × N) → (1st𝑥) ∈ N)
3122, 30syl 17 . . . . . . . . . 10 (𝑥Q → (1st𝑥) ∈ N)
32 xp2nd 8036 . . . . . . . . . . 11 (𝑥 ∈ (N × N) → (2nd𝑥) ∈ N)
3322, 32syl 17 . . . . . . . . . 10 (𝑥Q → (2nd𝑥) ∈ N)
34 mulpipq 10983 . . . . . . . . . 10 ((((1st𝑥) ∈ N ∧ (2nd𝑥) ∈ N) ∧ ((2nd𝑥) ∈ N ∧ (1st𝑥) ∈ N)) → (⟨(1st𝑥), (2nd𝑥)⟩ ·pQ ⟨(2nd𝑥), (1st𝑥)⟩) = ⟨((1st𝑥) ·N (2nd𝑥)), ((2nd𝑥) ·N (1st𝑥))⟩)
3531, 33, 33, 31, 34syl22anc 837 . . . . . . . . 9 (𝑥Q → (⟨(1st𝑥), (2nd𝑥)⟩ ·pQ ⟨(2nd𝑥), (1st𝑥)⟩) = ⟨((1st𝑥) ·N (2nd𝑥)), ((2nd𝑥) ·N (1st𝑥))⟩)
36 mulcompi 10939 . . . . . . . . . 10 ((2nd𝑥) ·N (1st𝑥)) = ((1st𝑥) ·N (2nd𝑥))
3736opeq2i 4883 . . . . . . . . 9 ⟨((1st𝑥) ·N (2nd𝑥)), ((2nd𝑥) ·N (1st𝑥))⟩ = ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩
3835, 37eqtrdi 2782 . . . . . . . 8 (𝑥Q → (⟨(1st𝑥), (2nd𝑥)⟩ ·pQ ⟨(2nd𝑥), (1st𝑥)⟩) = ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩)
3938fveq2d 6905 . . . . . . 7 (𝑥Q → ([Q]‘(⟨(1st𝑥), (2nd𝑥)⟩ ·pQ ⟨(2nd𝑥), (1st𝑥)⟩)) = ([Q]‘⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩))
40 mulclpi 10936 . . . . . . . . . . 11 (((1st𝑥) ∈ N ∧ (2nd𝑥) ∈ N) → ((1st𝑥) ·N (2nd𝑥)) ∈ N)
4131, 33, 40syl2anc 582 . . . . . . . . . 10 (𝑥Q → ((1st𝑥) ·N (2nd𝑥)) ∈ N)
42 1nqenq 11005 . . . . . . . . . 10 (((1st𝑥) ·N (2nd𝑥)) ∈ N → 1Q ~Q ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩)
4341, 42syl 17 . . . . . . . . 9 (𝑥Q → 1Q ~Q ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩)
44 elpqn 10968 . . . . . . . . . . 11 (1QQ → 1Q ∈ (N × N))
456, 44ax-mp 5 . . . . . . . . . 10 1Q ∈ (N × N)
4641, 41opelxpd 5721 . . . . . . . . . 10 (𝑥Q → ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩ ∈ (N × N))
47 nqereq 10978 . . . . . . . . . 10 ((1Q ∈ (N × N) ∧ ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩ ∈ (N × N)) → (1Q ~Q ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩ ↔ ([Q]‘1Q) = ([Q]‘⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩)))
4845, 46, 47sylancr 585 . . . . . . . . 9 (𝑥Q → (1Q ~Q ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩ ↔ ([Q]‘1Q) = ([Q]‘⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩)))
4943, 48mpbid 231 . . . . . . . 8 (𝑥Q → ([Q]‘1Q) = ([Q]‘⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩))
50 nqerid 10976 . . . . . . . . 9 (1QQ → ([Q]‘1Q) = 1Q)
516, 50ax-mp 5 . . . . . . . 8 ([Q]‘1Q) = 1Q
5249, 51eqtr3di 2781 . . . . . . 7 (𝑥Q → ([Q]‘⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩) = 1Q)
5329, 39, 523eqtrd 2770 . . . . . 6 (𝑥Q → (𝑥 ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)) = 1Q)
54 fvex 6914 . . . . . . 7 ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩) ∈ V
55 oveq2 7432 . . . . . . . 8 (𝑦 = ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩) → (𝑥 ·Q 𝑦) = (𝑥 ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)))
5655eqeq1d 2728 . . . . . . 7 (𝑦 = ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩) → ((𝑥 ·Q 𝑦) = 1Q ↔ (𝑥 ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)) = 1Q))
5754, 56spcev 3592 . . . . . 6 ((𝑥 ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)) = 1Q → ∃𝑦(𝑥 ·Q 𝑦) = 1Q)
5853, 57syl 17 . . . . 5 (𝑥Q → ∃𝑦(𝑥 ·Q 𝑦) = 1Q)
59 mulcomnq 10996 . . . . . 6 (𝑟 ·Q 𝑠) = (𝑠 ·Q 𝑟)
60 mulassnq 11002 . . . . . 6 ((𝑟 ·Q 𝑠) ·Q 𝑡) = (𝑟 ·Q (𝑠 ·Q 𝑡))
61 mulidnq 11006 . . . . . 6 (𝑟Q → (𝑟 ·Q 1Q) = 𝑟)
626, 9, 10, 59, 60, 61caovmo 7663 . . . . 5 ∃*𝑦(𝑥 ·Q 𝑦) = 1Q
63 df-eu 2558 . . . . 5 (∃!𝑦(𝑥 ·Q 𝑦) = 1Q ↔ (∃𝑦(𝑥 ·Q 𝑦) = 1Q ∧ ∃*𝑦(𝑥 ·Q 𝑦) = 1Q))
6458, 62, 63sylanblrc 588 . . . 4 (𝑥Q → ∃!𝑦(𝑥 ·Q 𝑦) = 1Q)
65 cnvimass 6091 . . . . . . . 8 ( ·Q “ {1Q}) ⊆ dom ·Q
66 df-rq 10960 . . . . . . . 8 *Q = ( ·Q “ {1Q})
679eqcomi 2735 . . . . . . . 8 (Q × Q) = dom ·Q
6865, 66, 673sstr4i 4023 . . . . . . 7 *Q ⊆ (Q × Q)
69 relxp 5700 . . . . . . 7 Rel (Q × Q)
70 relss 5787 . . . . . . 7 (*Q ⊆ (Q × Q) → (Rel (Q × Q) → Rel *Q))
7168, 69, 70mp2 9 . . . . . 6 Rel *Q
7266eleq2i 2818 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ *Q ↔ ⟨𝑥, 𝑦⟩ ∈ ( ·Q “ {1Q}))
73 ffn 6728 . . . . . . . . 9 ( ·Q :(Q × Q)⟶Q → ·Q Fn (Q × Q))
74 fniniseg 7073 . . . . . . . . 9 ( ·Q Fn (Q × Q) → (⟨𝑥, 𝑦⟩ ∈ ( ·Q “ {1Q}) ↔ (⟨𝑥, 𝑦⟩ ∈ (Q × Q) ∧ ( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q)))
758, 73, 74mp2b 10 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ ( ·Q “ {1Q}) ↔ (⟨𝑥, 𝑦⟩ ∈ (Q × Q) ∧ ( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q))
76 ancom 459 . . . . . . . . 9 ((⟨𝑥, 𝑦⟩ ∈ (Q × Q) ∧ ( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q) ↔ (( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q ∧ ⟨𝑥, 𝑦⟩ ∈ (Q × Q)))
77 ancom 459 . . . . . . . . . 10 ((𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ ((𝑥 ·Q 𝑦) = 1Q𝑥Q))
78 eleq1 2814 . . . . . . . . . . . . . . 15 ((𝑥 ·Q 𝑦) = 1Q → ((𝑥 ·Q 𝑦) ∈ Q ↔ 1QQ))
796, 78mpbiri 257 . . . . . . . . . . . . . 14 ((𝑥 ·Q 𝑦) = 1Q → (𝑥 ·Q 𝑦) ∈ Q)
809, 10ndmovrcl 7612 . . . . . . . . . . . . . 14 ((𝑥 ·Q 𝑦) ∈ Q → (𝑥Q𝑦Q))
8179, 80syl 17 . . . . . . . . . . . . 13 ((𝑥 ·Q 𝑦) = 1Q → (𝑥Q𝑦Q))
82 opelxpi 5719 . . . . . . . . . . . . 13 ((𝑥Q𝑦Q) → ⟨𝑥, 𝑦⟩ ∈ (Q × Q))
8381, 82syl 17 . . . . . . . . . . . 12 ((𝑥 ·Q 𝑦) = 1Q → ⟨𝑥, 𝑦⟩ ∈ (Q × Q))
8481simpld 493 . . . . . . . . . . . 12 ((𝑥 ·Q 𝑦) = 1Q𝑥Q)
8583, 842thd 264 . . . . . . . . . . 11 ((𝑥 ·Q 𝑦) = 1Q → (⟨𝑥, 𝑦⟩ ∈ (Q × Q) ↔ 𝑥Q))
8685pm5.32i 573 . . . . . . . . . 10 (((𝑥 ·Q 𝑦) = 1Q ∧ ⟨𝑥, 𝑦⟩ ∈ (Q × Q)) ↔ ((𝑥 ·Q 𝑦) = 1Q𝑥Q))
87 df-ov 7427 . . . . . . . . . . . 12 (𝑥 ·Q 𝑦) = ( ·Q ‘⟨𝑥, 𝑦⟩)
8887eqeq1i 2731 . . . . . . . . . . 11 ((𝑥 ·Q 𝑦) = 1Q ↔ ( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q)
8988anbi1i 622 . . . . . . . . . 10 (((𝑥 ·Q 𝑦) = 1Q ∧ ⟨𝑥, 𝑦⟩ ∈ (Q × Q)) ↔ (( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q ∧ ⟨𝑥, 𝑦⟩ ∈ (Q × Q)))
9077, 86, 893bitr2ri 299 . . . . . . . . 9 ((( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q ∧ ⟨𝑥, 𝑦⟩ ∈ (Q × Q)) ↔ (𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q))
9176, 90bitri 274 . . . . . . . 8 ((⟨𝑥, 𝑦⟩ ∈ (Q × Q) ∧ ( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q) ↔ (𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q))
9272, 75, 913bitri 296 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ *Q ↔ (𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q))
9392a1i 11 . . . . . 6 (⊤ → (⟨𝑥, 𝑦⟩ ∈ *Q ↔ (𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q)))
9471, 93opabbi2dv 5856 . . . . 5 (⊤ → *Q = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q)})
9594mptru 1541 . . . 4 *Q = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q)}
9617, 19, 64, 95fvopab3g 7004 . . 3 ((𝐴Q𝐵 ∈ V) → ((*Q𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q))
9796ex 411 . 2 (𝐴Q → (𝐵 ∈ V → ((*Q𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q)))
984, 15, 97pm5.21ndd 378 1 (𝐴Q → ((*Q𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wtru 1535  wex 1774  wcel 2099  ∃*wmo 2527  ∃!weu 2557  Vcvv 3462  wss 3947  {csn 4633  cop 4639   class class class wbr 5153  {copab 5215   × cxp 5680  ccnv 5681  dom cdm 5682  cima 5685  Rel wrel 5687   Fn wfn 6549  wf 6550  cfv 6554  (class class class)co 7424  1st c1st 8001  2nd c2nd 8002  Ncnpi 10887   ·N cmi 10889   ·pQ cmpq 10892   ~Q ceq 10894  Qcnq 10895  1Qc1q 10896  [Q]cerq 10897   ·Q cmq 10899  *Qcrq 10900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-oadd 8500  df-omul 8501  df-er 8734  df-ni 10915  df-mi 10917  df-lti 10918  df-mpq 10952  df-enq 10954  df-nq 10955  df-erq 10956  df-mq 10958  df-1nq 10959  df-rq 10960
This theorem is referenced by:  recidnq  11008  recrecnq  11010  reclem3pr  11092
  Copyright terms: Public domain W3C validator
OSZAR »