![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-mpt | Structured version Visualization version GIF version |
Description: Define maps-to notation for defining a function via a rule. Read as "the function which maps 𝑥 (in 𝐴) to 𝐵(𝑥)". The class expression 𝐵 is the value of the function at 𝑥 and normally contains the variable 𝑥. An example is the square function for complex numbers, (𝑥 ∈ ℂ ↦ (𝑥↑2)). Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.) |
Ref | Expression |
---|---|
df-mpt | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | cA | . . 3 class 𝐴 | |
3 | cB | . . 3 class 𝐵 | |
4 | 1, 2, 3 | cmpt 5236 | . 2 class (𝑥 ∈ 𝐴 ↦ 𝐵) |
5 | 1 | cv 1533 | . . . . 5 class 𝑥 |
6 | 5, 2 | wcel 2099 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | vy | . . . . . 6 setvar 𝑦 | |
8 | 7 | cv 1533 | . . . . 5 class 𝑦 |
9 | 8, 3 | wceq 1534 | . . . 4 wff 𝑦 = 𝐵 |
10 | 6, 9 | wa 394 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) |
11 | 10, 1, 7 | copab 5215 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
12 | 4, 11 | wceq 1534 | 1 wff (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
Colors of variables: wff setvar class |
This definition is referenced by: mpteq12da 5238 mpteq12dfOLD 5240 mpteq12f 5241 mpteq12dva 5242 nfmpt 5260 nfmpt1 5261 cbvmptf 5262 cbvmptfg 5263 cbvmptv 5266 mptv 5269 csbmpt12 5563 dfid4 5581 fconstmpt 5744 mptrel 5831 rnmpt 5961 resmpt 6046 mptresid 6060 mptcnv 6151 mptpreima 6249 funmpt 6597 dfmpt3 6695 mptfnf 6696 mptfng 6700 mptun 6707 dffn5 6961 feqmptdf 6973 fvmptg 7007 fvmptndm 7040 fndmin 7058 f1ompt 7125 fmptco 7143 fmptsng 7182 fmptsnd 7183 mpomptx 7538 f1ocnvd 7677 dftpos4 8260 mpocurryd 8284 mapsncnv 8922 marypha2lem3 9480 cardf2 9986 aceq3lem 10163 compsscnv 10414 pjfval2 21707 2ndcdisj 23451 xkocnv 23809 dvcnp2 25940 dvmulbr 25960 dvcobr 25968 cmvth 26014 dvfsumle 26045 dvfsumlem2 26052 taylthlem2 26402 abrexexd 32434 f1o3d 32544 fmptcof2 32574 mptssALT 32592 mpomptxf 32595 f1od2 32635 qqhval2 33797 dfbigcup2 35723 bj-0nelmpt 36823 bj-mpomptALT 36826 rnmptsn 37042 curf 37299 curunc 37303 phpreu 37305 poimirlem26 37347 mbfposadd 37368 fnopabco 37424 mptbi12f 37867 fgraphopab 42868 mptssid 44849 dfafn5a 46773 mpomptx2 47713 |
Copyright terms: Public domain | W3C validator |