MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnp2 Structured version   Visualization version   GIF version

Theorem dvcnp2 25848
Description: A function is continuous at each point for which it is differentiable. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) Avoid ax-mulf 11218. (Revised by GG, 16-Mar-2025.)
Hypotheses
Ref Expression
dvcnp.j 𝐽 = (𝐾t 𝐴)
dvcnp.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
dvcnp2 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))

Proof of Theorem dvcnp2
Dummy variables 𝑦 𝑧 𝑥 𝑤 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1190 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐹:𝐴⟶ℂ)
21ffvelcdmda 7094 . . . . . . . 8 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
3 dvcnp.k . . . . . . . . . . . . . 14 𝐾 = (TopOpen‘ℂfld)
43cnfldtop 24699 . . . . . . . . . . . . 13 𝐾 ∈ Top
5 simpl1 1189 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑆 ⊆ ℂ)
6 cnex 11219 . . . . . . . . . . . . . 14 ℂ ∈ V
7 ssexg 5323 . . . . . . . . . . . . . 14 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
85, 6, 7sylancl 585 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑆 ∈ V)
9 resttop 23063 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ 𝑆 ∈ V) → (𝐾t 𝑆) ∈ Top)
104, 8, 9sylancr 586 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐾t 𝑆) ∈ Top)
11 simpl3 1191 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐴𝑆)
123cnfldtopon 24698 . . . . . . . . . . . . . . 15 𝐾 ∈ (TopOn‘ℂ)
13 resttopon 23064 . . . . . . . . . . . . . . 15 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
1412, 5, 13sylancr 586 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
15 toponuni 22815 . . . . . . . . . . . . . 14 ((𝐾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = (𝐾t 𝑆))
1614, 15syl 17 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑆 = (𝐾t 𝑆))
1711, 16sseqtrd 4020 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐴 (𝐾t 𝑆))
18 eqid 2728 . . . . . . . . . . . . 13 (𝐾t 𝑆) = (𝐾t 𝑆)
1918ntrss2 22960 . . . . . . . . . . . 12 (((𝐾t 𝑆) ∈ Top ∧ 𝐴 (𝐾t 𝑆)) → ((int‘(𝐾t 𝑆))‘𝐴) ⊆ 𝐴)
2010, 17, 19syl2anc 583 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((int‘(𝐾t 𝑆))‘𝐴) ⊆ 𝐴)
21 eqid 2728 . . . . . . . . . . . . 13 (𝐾t 𝑆) = (𝐾t 𝑆)
22 eqid 2728 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)))
23 simp1 1134 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝑆 ⊆ ℂ)
24 simp2 1135 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝐹:𝐴⟶ℂ)
25 simp3 1136 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝐴𝑆)
2621, 3, 22, 23, 24, 25eldv 25826 . . . . . . . . . . . 12 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → (𝐵(𝑆 D 𝐹)𝑦 ↔ (𝐵 ∈ ((int‘(𝐾t 𝑆))‘𝐴) ∧ 𝑦 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))) lim 𝐵))))
2726simprbda 498 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵 ∈ ((int‘(𝐾t 𝑆))‘𝐴))
2820, 27sseldd 3981 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵𝐴)
291, 28ffvelcdmd 7095 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹𝐵) ∈ ℂ)
3029adantr 480 . . . . . . . 8 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧𝐴) → (𝐹𝐵) ∈ ℂ)
312, 30subcld 11601 . . . . . . 7 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧𝐴) → ((𝐹𝑧) − (𝐹𝐵)) ∈ ℂ)
32 ssidd 4003 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ℂ ⊆ ℂ)
33 txtopon 23494 . . . . . . . . 9 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐾 ∈ (TopOn‘ℂ)) → (𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ × ℂ)))
3412, 12, 33mp2an 691 . . . . . . . 8 (𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ × ℂ))
3534toponrestid 22822 . . . . . . 7 (𝐾 ×t 𝐾) = ((𝐾 ×t 𝐾) ↾t (ℂ × ℂ))
3611, 5sstrd 3990 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐴 ⊆ ℂ)
37 eqid 2728 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑥) − (𝐹𝐵)) / (𝑥𝐵))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑥) − (𝐹𝐵)) / (𝑥𝐵)))
3821, 3, 37, 23, 24, 25eldv 25826 . . . . . . . . . . . . . . 15 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → (𝐵(𝑆 D 𝐹)𝑦 ↔ (𝐵 ∈ ((int‘(𝐾t 𝑆))‘𝐴) ∧ 𝑦 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑥) − (𝐹𝐵)) / (𝑥𝐵))) lim 𝐵))))
3938simprbda 498 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵 ∈ ((int‘(𝐾t 𝑆))‘𝐴))
4020, 39sseldd 3981 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵𝐴)
411, 36, 40dvlem 25824 . . . . . . . . . . . 12 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) ∈ ℂ)
4236ssdifssd 4141 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
4342sselda 3980 . . . . . . . . . . . . 13 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧 ∈ ℂ)
4436, 40sseldd 3981 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵 ∈ ℂ)
4544adantr 480 . . . . . . . . . . . . 13 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ)
4643, 45subcld 11601 . . . . . . . . . . . 12 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧𝐵) ∈ ℂ)
4726simplbda 499 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))) lim 𝐵))
48 limcresi 25813 . . . . . . . . . . . . . 14 ((𝑧𝐴 ↦ (𝑧𝐵)) lim 𝐵) ⊆ (((𝑧𝐴 ↦ (𝑧𝐵)) ↾ (𝐴 ∖ {𝐵})) lim 𝐵)
49 difss 4130 . . . . . . . . . . . . . . . 16 (𝐴 ∖ {𝐵}) ⊆ 𝐴
50 resmpt 6041 . . . . . . . . . . . . . . . 16 ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑧𝐴 ↦ (𝑧𝐵)) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧𝐵)))
5149, 50ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑧𝐴 ↦ (𝑧𝐵)) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧𝐵))
5251oveq1i 7430 . . . . . . . . . . . . . 14 (((𝑧𝐴 ↦ (𝑧𝐵)) ↾ (𝐴 ∖ {𝐵})) lim 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧𝐵)) lim 𝐵)
5348, 52sseqtri 4016 . . . . . . . . . . . . 13 ((𝑧𝐴 ↦ (𝑧𝐵)) lim 𝐵) ⊆ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧𝐵)) lim 𝐵)
5444subidd 11589 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐵𝐵) = 0)
55 ssid 4002 . . . . . . . . . . . . . . . . 17 ℂ ⊆ ℂ
56 cncfmptid 24832 . . . . . . . . . . . . . . . . 17 ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧𝐴𝑧) ∈ (𝐴cn→ℂ))
5736, 55, 56sylancl 585 . . . . . . . . . . . . . . . 16 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴𝑧) ∈ (𝐴cn→ℂ))
58 cncfmptc 24831 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℂ ∧ 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧𝐴𝐵) ∈ (𝐴cn→ℂ))
5944, 36, 32, 58syl3anc 1369 . . . . . . . . . . . . . . . 16 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴𝐵) ∈ (𝐴cn→ℂ))
6057, 59subcncf 25372 . . . . . . . . . . . . . . 15 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴 ↦ (𝑧𝐵)) ∈ (𝐴cn→ℂ))
61 oveq1 7427 . . . . . . . . . . . . . . 15 (𝑧 = 𝐵 → (𝑧𝐵) = (𝐵𝐵))
6260, 40, 61cnmptlimc 25818 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐵𝐵) ∈ ((𝑧𝐴 ↦ (𝑧𝐵)) lim 𝐵))
6354, 62eqeltrrd 2830 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧𝐴 ↦ (𝑧𝐵)) lim 𝐵))
6453, 63sselid 3978 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧𝐵)) lim 𝐵))
653mpomulcn 24784 . . . . . . . . . . . . 13 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
6623, 24, 25dvcl 25827 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ)
67 0cn 11236 . . . . . . . . . . . . . 14 0 ∈ ℂ
68 opelxpi 5715 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ 0 ∈ ℂ) → ⟨𝑦, 0⟩ ∈ (ℂ × ℂ))
6966, 67, 68sylancl 585 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ⟨𝑦, 0⟩ ∈ (ℂ × ℂ))
7034toponunii 22817 . . . . . . . . . . . . . 14 (ℂ × ℂ) = (𝐾 ×t 𝐾)
7170cncnpi 23181 . . . . . . . . . . . . 13 (((𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐾 ×t 𝐾) Cn 𝐾) ∧ ⟨𝑦, 0⟩ ∈ (ℂ × ℂ)) → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((𝐾 ×t 𝐾) CnP 𝐾)‘⟨𝑦, 0⟩))
7265, 69, 71sylancr 586 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((𝐾 ×t 𝐾) CnP 𝐾)‘⟨𝑦, 0⟩))
7341, 46, 32, 32, 3, 35, 47, 64, 72limccnp2 25820 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))0) ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧𝐵))) lim 𝐵))
74 df-mpt 5232 . . . . . . . . . . . 12 (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧𝐵))) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧𝐵)))}
7574oveq1i 7430 . . . . . . . . . . 11 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧𝐵))) lim 𝐵) = ({⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧𝐵)))} lim 𝐵)
7673, 75eleqtrdi 2839 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))0) ∈ ({⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧𝐵)))} lim 𝐵))
77 0cnd 11237 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ℂ)
78 ovmpot 7582 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))0) = (𝑦 · 0))
7966, 77, 78syl2anc 583 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))0) = (𝑦 · 0))
801, 36, 28dvlem 25824 . . . . . . . . . . . . . . . 16 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) ∈ ℂ)
8136, 28sseldd 3981 . . . . . . . . . . . . . . . . . 18 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵 ∈ ℂ)
8281adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ)
8343, 82subcld 11601 . . . . . . . . . . . . . . . 16 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧𝐵) ∈ ℂ)
84 ovmpot 7582 . . . . . . . . . . . . . . . 16 (((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) ∈ ℂ ∧ (𝑧𝐵) ∈ ℂ) → ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧𝐵)) = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵)))
8580, 83, 84syl2anc 583 . . . . . . . . . . . . . . 15 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧𝐵)) = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵)))
8685eqeq2d 2739 . . . . . . . . . . . . . 14 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑤 = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧𝐵)) ↔ 𝑤 = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵))))
8786pm5.32da 578 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧𝐵))) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵)))))
8887opabbidv 5214 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧𝐵)))} = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵)))})
89 df-mpt 5232 . . . . . . . . . . . 12 (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵))) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵)))}
9088, 89eqtr4di 2786 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧𝐵)))} = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵))))
9190oveq1d 7435 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ({⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ 𝑤 = ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑧𝐵)))} lim 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵))) lim 𝐵))
9276, 79, 913eltr3d 2843 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑦 · 0) ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵))) lim 𝐵))
9366mul01d 11443 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑦 · 0) = 0)
941adantr 480 . . . . . . . . . . . . . 14 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐹:𝐴⟶ℂ)
95 simpr 484 . . . . . . . . . . . . . . 15 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧 ∈ (𝐴 ∖ {𝐵}))
9649, 95sselid 3978 . . . . . . . . . . . . . 14 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧𝐴)
9794, 96ffvelcdmd 7095 . . . . . . . . . . . . 13 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝐹𝑧) ∈ ℂ)
9829adantr 480 . . . . . . . . . . . . 13 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝐹𝐵) ∈ ℂ)
9997, 98subcld 11601 . . . . . . . . . . . 12 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝐹𝑧) − (𝐹𝐵)) ∈ ℂ)
100 eldifsni 4794 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐴 ∖ {𝐵}) → 𝑧𝐵)
101100adantl 481 . . . . . . . . . . . . 13 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧𝐵)
10243, 82, 101subne0d 11610 . . . . . . . . . . . 12 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧𝐵) ≠ 0)
10399, 83, 102divcan1d 12021 . . . . . . . . . . 11 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵)) = ((𝐹𝑧) − (𝐹𝐵)))
104103mpteq2dva 5248 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵))) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))))
105104oveq1d 7435 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵))) lim 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵))
10692, 93, 1053eltr3d 2843 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵))
10731fmpttd 7125 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))):𝐴⟶ℂ)
108107limcdif 25804 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵) = (((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) ↾ (𝐴 ∖ {𝐵})) lim 𝐵))
109 resmpt 6041 . . . . . . . . . . 11 ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))))
11049, 109ax-mp 5 . . . . . . . . . 10 ((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵)))
111110oveq1i 7430 . . . . . . . . 9 (((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) ↾ (𝐴 ∖ {𝐵})) lim 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵)
112108, 111eqtrdi 2784 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵))
113106, 112eleqtrrd 2832 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵))
114 cncfmptc 24831 . . . . . . . . 9 (((𝐹𝐵) ∈ ℂ ∧ 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn→ℂ))
11529, 36, 32, 114syl3anc 1369 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn→ℂ))
116 eqidd 2729 . . . . . . . 8 (𝑧 = 𝐵 → (𝐹𝐵) = (𝐹𝐵))
117115, 28, 116cnmptlimc 25818 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹𝐵) ∈ ((𝑧𝐴 ↦ (𝐹𝐵)) lim 𝐵))
1183addcn 24780 . . . . . . . 8 + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
119 opelxpi 5715 . . . . . . . . 9 ((0 ∈ ℂ ∧ (𝐹𝐵) ∈ ℂ) → ⟨0, (𝐹𝐵)⟩ ∈ (ℂ × ℂ))
12067, 29, 119sylancr 586 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ⟨0, (𝐹𝐵)⟩ ∈ (ℂ × ℂ))
12170cncnpi 23181 . . . . . . . 8 (( + ∈ ((𝐾 ×t 𝐾) Cn 𝐾) ∧ ⟨0, (𝐹𝐵)⟩ ∈ (ℂ × ℂ)) → + ∈ (((𝐾 ×t 𝐾) CnP 𝐾)‘⟨0, (𝐹𝐵)⟩))
122118, 120, 121sylancr 586 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → + ∈ (((𝐾 ×t 𝐾) CnP 𝐾)‘⟨0, (𝐹𝐵)⟩))
12331, 30, 32, 32, 3, 35, 113, 117, 122limccnp2 25820 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (0 + (𝐹𝐵)) ∈ ((𝑧𝐴 ↦ (((𝐹𝑧) − (𝐹𝐵)) + (𝐹𝐵))) lim 𝐵))
12429addlidd 11445 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (0 + (𝐹𝐵)) = (𝐹𝐵))
1252, 30npcand 11605 . . . . . . . . 9 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧𝐴) → (((𝐹𝑧) − (𝐹𝐵)) + (𝐹𝐵)) = (𝐹𝑧))
126125mpteq2dva 5248 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴 ↦ (((𝐹𝑧) − (𝐹𝐵)) + (𝐹𝐵))) = (𝑧𝐴 ↦ (𝐹𝑧)))
1271feqmptd 6967 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐹 = (𝑧𝐴 ↦ (𝐹𝑧)))
128126, 127eqtr4d 2771 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴 ↦ (((𝐹𝑧) − (𝐹𝐵)) + (𝐹𝐵))) = 𝐹)
129128oveq1d 7435 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧𝐴 ↦ (((𝐹𝑧) − (𝐹𝐵)) + (𝐹𝐵))) lim 𝐵) = (𝐹 lim 𝐵))
130123, 124, 1293eltr3d 2843 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
131 dvcnp.j . . . . . . 7 𝐽 = (𝐾t 𝐴)
1323, 131cnplimc 25815 . . . . . 6 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
13336, 28, 132syl2anc 583 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
1341, 130, 133mpbir2and 712 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))
135134ex 412 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → (𝐵(𝑆 D 𝐹)𝑦𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)))
136135exlimdv 1929 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → (∃𝑦 𝐵(𝑆 D 𝐹)𝑦𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)))
137 eldmg 5901 . . 3 (𝐵 ∈ dom (𝑆 D 𝐹) → (𝐵 ∈ dom (𝑆 D 𝐹) ↔ ∃𝑦 𝐵(𝑆 D 𝐹)𝑦))
138137ibi 267 . 2 (𝐵 ∈ dom (𝑆 D 𝐹) → ∃𝑦 𝐵(𝑆 D 𝐹)𝑦)
139136, 138impel 505 1 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wex 1774  wcel 2099  wne 2937  Vcvv 3471  cdif 3944  wss 3947  {csn 4629  cop 4635   cuni 4908   class class class wbr 5148  {copab 5210  cmpt 5231   × cxp 5676  dom cdm 5678  cres 5680  wf 6544  cfv 6548  (class class class)co 7420  cmpo 7422  cc 11136  0cc0 11138   + caddc 11141   · cmul 11143  cmin 11474   / cdiv 11901  t crest 17401  TopOpenctopn 17402  fldccnfld 21278  Topctop 22794  TopOnctopon 22811  intcnt 22920   Cn ccn 23127   CnP ccnp 23128   ×t ctx 23463  cnccncf 24795   lim climc 25790   D cdv 25791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-addf 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-om 7871  df-1st 7993  df-2nd 7994  df-supp 8166  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-2o 8487  df-er 8724  df-map 8846  df-pm 8847  df-ixp 8916  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-fsupp 9386  df-fi 9434  df-sup 9465  df-inf 9466  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-q 12963  df-rp 13007  df-xneg 13124  df-xadd 13125  df-xmul 13126  df-icc 13363  df-fz 13517  df-fzo 13660  df-seq 13999  df-exp 14059  df-hash 14322  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-mulr 17246  df-starv 17247  df-sca 17248  df-vsca 17249  df-ip 17250  df-tset 17251  df-ple 17252  df-ds 17254  df-unif 17255  df-hom 17256  df-cco 17257  df-rest 17403  df-topn 17404  df-0g 17422  df-gsum 17423  df-topgen 17424  df-pt 17425  df-prds 17428  df-xrs 17483  df-qtop 17488  df-imas 17489  df-xps 17491  df-mre 17565  df-mrc 17566  df-acs 17568  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-submnd 18740  df-mulg 19023  df-cntz 19267  df-cmn 19736  df-psmet 21270  df-xmet 21271  df-met 21272  df-bl 21273  df-mopn 21274  df-cnfld 21279  df-top 22795  df-topon 22812  df-topsp 22834  df-bases 22848  df-ntr 22923  df-cn 23130  df-cnp 23131  df-tx 23465  df-hmeo 23658  df-xms 24225  df-ms 24226  df-tms 24227  df-cncf 24797  df-limc 25794  df-dv 25795
This theorem is referenced by:  dvcn  25850  dvmulbr  25868  dvmulbrOLD  25869  dvcobr  25876  dvcobrOLD  25877  fouriersw  45619
  Copyright terms: Public domain W3C validator
OSZAR »