![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > toponrestid | Structured version Visualization version GIF version |
Description: Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.) |
Ref | Expression |
---|---|
toponrestid.t | ⊢ 𝐴 ∈ (TopOn‘𝐵) |
Ref | Expression |
---|---|
toponrestid | ⊢ 𝐴 = (𝐴 ↾t 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponrestid.t | . . 3 ⊢ 𝐴 ∈ (TopOn‘𝐵) | |
2 | 1 | toponunii 22817 | . . . 4 ⊢ 𝐵 = ∪ 𝐴 |
3 | 2 | restid 17414 | . . 3 ⊢ (𝐴 ∈ (TopOn‘𝐵) → (𝐴 ↾t 𝐵) = 𝐴) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝐴 ↾t 𝐵) = 𝐴 |
5 | 4 | eqcomi 2737 | 1 ⊢ 𝐴 = (𝐴 ↾t 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ‘cfv 6548 (class class class)co 7420 ↾t crest 17401 TopOnctopon 22811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-rest 17403 df-topon 22812 |
This theorem is referenced by: cncfcn1 24830 cncfmpt2f 24834 cdivcncf 24840 cnrehmeo 24877 cnrehmeoOLD 24878 mulcncf 25373 cnlimc 25816 dvidlem 25843 dvcnp2 25848 dvcnp2OLD 25849 dvcn 25850 dvnres 25860 dvaddbr 25867 dvmulbr 25868 dvmulbrOLD 25869 dvcobr 25876 dvcobrOLD 25877 dvcjbr 25880 dvrec 25886 dvexp3 25909 dveflem 25910 dvlipcn 25926 lhop1lem 25945 ftc1cn 25977 dvply1 26217 dvtaylp 26304 taylthlem2 26308 taylthlem2OLD 26309 psercn 26362 pserdvlem2 26364 pserdv 26365 abelth 26377 logcn 26580 dvloglem 26581 dvlog 26584 dvlog2 26586 efopnlem2 26590 logtayl 26593 cxpcn 26678 cxpcnOLD 26679 cxpcn2 26680 cxpcn3 26682 resqrtcn 26683 sqrtcn 26684 dvatan 26866 ftalem3 27006 cxpcncf1 34227 knoppcnlem10 35977 knoppcnlem11 35978 dvtan 37143 ftc1cnnc 37165 dvasin 37177 dvacos 37178 cxpcncf2 45287 |
Copyright terms: Public domain | W3C validator |