Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem10 Structured version   Visualization version   GIF version

Theorem knoppcnlem10 35971
Description: Lemma for knoppcn 35973. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) Avoid ax-mulf 11212. (Revised by GG, 19-Apr-2025.)
Hypotheses
Ref Expression
knoppcnlem10.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem10.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem10.n (𝜑𝑁 ∈ ℕ)
knoppcnlem10.1 (𝜑𝐶 ∈ ℝ)
knoppcnlem10.2 (𝜑𝑀 ∈ ℕ0)
Assertion
Ref Expression
knoppcnlem10 (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑀)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
Distinct variable groups:   𝐶,𝑛,𝑦,𝑧   𝑛,𝑀,𝑧   𝑛,𝑁,𝑦,𝑧   𝑇,𝑛,𝑦,𝑧   𝜑,𝑛,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑇(𝑥)   𝐹(𝑥,𝑦,𝑧,𝑛)   𝑀(𝑥,𝑦)   𝑁(𝑥)

Proof of Theorem knoppcnlem10
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 knoppcnlem10.f . . . 4 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
2 simpr 484 . . . 4 ((𝜑𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
3 knoppcnlem10.2 . . . . 5 (𝜑𝑀 ∈ ℕ0)
43adantr 480 . . . 4 ((𝜑𝑧 ∈ ℝ) → 𝑀 ∈ ℕ0)
51, 2, 4knoppcnlem1 35962 . . 3 ((𝜑𝑧 ∈ ℝ) → ((𝐹𝑧)‘𝑀) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧))))
65mpteq2dva 5242 . 2 (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑀)) = (𝑧 ∈ ℝ ↦ ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧)))))
7 retopon 24673 . . . 4 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
87a1i 11 . . 3 (𝜑 → (topGen‘ran (,)) ∈ (TopOn‘ℝ))
9 eqid 2728 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
109cnfldtopon 24692 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1110a1i 11 . . . 4 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
12 knoppcnlem10.1 . . . . . 6 (𝜑𝐶 ∈ ℝ)
1312recnd 11266 . . . . 5 (𝜑𝐶 ∈ ℂ)
1413, 3expcld 14136 . . . 4 (𝜑 → (𝐶𝑀) ∈ ℂ)
158, 11, 14cnmptc 23559 . . 3 (𝜑 → (𝑧 ∈ ℝ ↦ (𝐶𝑀)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
16 2cnd 12314 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
17 knoppcnlem10.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
1817nncnd 12252 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
1916, 18mulcld 11258 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ∈ ℂ)
2019, 3expcld 14136 . . . . . . . 8 (𝜑 → ((2 · 𝑁)↑𝑀) ∈ ℂ)
218, 11, 20cnmptc 23559 . . . . . . 7 (𝜑 → (𝑧 ∈ ℝ ↦ ((2 · 𝑁)↑𝑀)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
229tgioo2 24712 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2322oveq2i 7425 . . . . . . . . 9 ((topGen‘ran (,)) Cn (topGen‘ran (,))) = ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ))
249cnfldtop 24693 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Top
25 cnrest2r 23184 . . . . . . . . . 10 ((TopOpen‘ℂfld) ∈ Top → ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ)) ⊆ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
2624, 25ax-mp 5 . . . . . . . . 9 ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ)) ⊆ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))
2723, 26eqsstri 4012 . . . . . . . 8 ((topGen‘ran (,)) Cn (topGen‘ran (,))) ⊆ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))
288cnmptid 23558 . . . . . . . 8 (𝜑 → (𝑧 ∈ ℝ ↦ 𝑧) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
2927, 28sselid 3976 . . . . . . 7 (𝜑 → (𝑧 ∈ ℝ ↦ 𝑧) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
309mpomulcn 24778 . . . . . . . 8 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
3130a1i 11 . . . . . . 7 (𝜑 → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
32 oveq12 7423 . . . . . . 7 ((𝑢 = ((2 · 𝑁)↑𝑀) ∧ 𝑣 = 𝑧) → (𝑢 · 𝑣) = (((2 · 𝑁)↑𝑀) · 𝑧))
338, 21, 29, 11, 11, 31, 32cnmpt12 23564 . . . . . 6 (𝜑 → (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
34 2re 12310 . . . . . . . . . . . . . 14 2 ∈ ℝ
3534a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℝ)
3617nnred 12251 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
3735, 36remulcld 11268 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ∈ ℝ)
3837, 3reexpcld 14153 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁)↑𝑀) ∈ ℝ)
3938adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℝ) → ((2 · 𝑁)↑𝑀) ∈ ℝ)
4039, 2remulcld 11268 . . . . . . . . 9 ((𝜑𝑧 ∈ ℝ) → (((2 · 𝑁)↑𝑀) · 𝑧) ∈ ℝ)
4140fmpttd 7119 . . . . . . . 8 (𝜑 → (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)):ℝ⟶ℝ)
4241frnd 6724 . . . . . . 7 (𝜑 → ran (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ⊆ ℝ)
43 ax-resscn 11189 . . . . . . . 8 ℝ ⊆ ℂ
4443a1i 11 . . . . . . 7 (𝜑 → ℝ ⊆ ℂ)
45 cnrest2 23183 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)) ↔ (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4610, 42, 44, 45mp3an2i 1463 . . . . . 6 (𝜑 → ((𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)) ↔ (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4733, 46mpbid 231 . . . . 5 (𝜑 → (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4847, 23eleqtrrdi 2840 . . . 4 (𝜑 → (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
49 ssid 4000 . . . . . . 7 ℂ ⊆ ℂ
50 cncfss 24812 . . . . . . 7 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ))
5143, 49, 50mp2an 691 . . . . . 6 (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ)
52 knoppcnlem10.t . . . . . . . 8 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
5352dnicn 35961 . . . . . . 7 𝑇 ∈ (ℝ–cn→ℝ)
5453a1i 11 . . . . . 6 (𝜑𝑇 ∈ (ℝ–cn→ℝ))
5551, 54sselid 3976 . . . . 5 (𝜑𝑇 ∈ (ℝ–cn→ℂ))
5610toponrestid 22816 . . . . . . 7 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
579, 22, 56cncfcn 24823 . . . . . 6 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℂ) = ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
5843, 49, 57mp2an 691 . . . . 5 (ℝ–cn→ℂ) = ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))
5955, 58eleqtrdi 2839 . . . 4 (𝜑𝑇 ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
608, 48, 59cnmpt11f 23561 . . 3 (𝜑 → (𝑧 ∈ ℝ ↦ (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧))) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
61 oveq12 7423 . . 3 ((𝑢 = (𝐶𝑀) ∧ 𝑣 = (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧))) → (𝑢 · 𝑣) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧))))
628, 15, 60, 11, 11, 31, 61cnmpt12 23564 . 2 (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧)))) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
636, 62eqeltrd 2829 1 (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑀)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wss 3945  cmpt 5225  ran crn 5673  cfv 6542  (class class class)co 7414  cmpo 7416  cc 11130  cr 11131  1c1 11133   + caddc 11135   · cmul 11137  cmin 11468   / cdiv 11895  cn 12236  2c2 12291  0cn0 12496  (,)cioo 13350  cfl 13781  cexp 14052  abscabs 15207  t crest 17395  TopOpenctopn 17396  topGenctg 17412  fldccnfld 21272  Topctop 22788  TopOnctopon 22805   Cn ccn 23121   ×t ctx 23457  cnccncf 24789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-q 12957  df-rp 13001  df-xneg 13118  df-xadd 13119  df-xmul 13120  df-ioo 13354  df-icc 13357  df-fz 13511  df-fzo 13654  df-fl 13783  df-seq 13993  df-exp 14053  df-hash 14316  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17397  df-topn 17398  df-0g 17416  df-gsum 17417  df-topgen 17418  df-pt 17419  df-prds 17422  df-xrs 17477  df-qtop 17482  df-imas 17483  df-xps 17485  df-mre 17559  df-mrc 17560  df-acs 17562  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-mulg 19017  df-cntz 19261  df-cmn 19730  df-psmet 21264  df-xmet 21265  df-met 21266  df-bl 21267  df-mopn 21268  df-cnfld 21273  df-top 22789  df-topon 22806  df-topsp 22828  df-bases 22842  df-cn 23124  df-cnp 23125  df-tx 23459  df-hmeo 23652  df-xms 24219  df-ms 24220  df-tms 24221  df-cncf 24791
This theorem is referenced by:  knoppcnlem11  35972
  Copyright terms: Public domain W3C validator
OSZAR »