Step | Hyp | Ref
| Expression |
1 | | knoppcnlem10.f |
. . . 4
⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
2 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ) |
3 | | knoppcnlem10.2 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
4 | 3 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → 𝑀 ∈
ℕ0) |
5 | 1, 2, 4 | knoppcnlem1 35962 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → ((𝐹‘𝑧)‘𝑀) = ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧)))) |
6 | 5 | mpteq2dva 5242 |
. 2
⊢ (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑀)) = (𝑧 ∈ ℝ ↦ ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧))))) |
7 | | retopon 24673 |
. . . 4
⊢
(topGen‘ran (,)) ∈ (TopOn‘ℝ) |
8 | 7 | a1i 11 |
. . 3
⊢ (𝜑 → (topGen‘ran (,))
∈ (TopOn‘ℝ)) |
9 | | eqid 2728 |
. . . . . 6
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
10 | 9 | cnfldtopon 24692 |
. . . . 5
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
11 | 10 | a1i 11 |
. . . 4
⊢ (𝜑 →
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ)) |
12 | | knoppcnlem10.1 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ℝ) |
13 | 12 | recnd 11266 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ ℂ) |
14 | 13, 3 | expcld 14136 |
. . . 4
⊢ (𝜑 → (𝐶↑𝑀) ∈ ℂ) |
15 | 8, 11, 14 | cnmptc 23559 |
. . 3
⊢ (𝜑 → (𝑧 ∈ ℝ ↦ (𝐶↑𝑀)) ∈ ((topGen‘ran (,)) Cn
(TopOpen‘ℂfld))) |
16 | | 2cnd 12314 |
. . . . . . . . . 10
⊢ (𝜑 → 2 ∈
ℂ) |
17 | | knoppcnlem10.n |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℕ) |
18 | 17 | nncnd 12252 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℂ) |
19 | 16, 18 | mulcld 11258 |
. . . . . . . . 9
⊢ (𝜑 → (2 · 𝑁) ∈
ℂ) |
20 | 19, 3 | expcld 14136 |
. . . . . . . 8
⊢ (𝜑 → ((2 · 𝑁)↑𝑀) ∈ ℂ) |
21 | 8, 11, 20 | cnmptc 23559 |
. . . . . . 7
⊢ (𝜑 → (𝑧 ∈ ℝ ↦ ((2 · 𝑁)↑𝑀)) ∈ ((topGen‘ran (,)) Cn
(TopOpen‘ℂfld))) |
22 | 9 | tgioo2 24712 |
. . . . . . . . . 10
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
23 | 22 | oveq2i 7425 |
. . . . . . . . 9
⊢
((topGen‘ran (,)) Cn (topGen‘ran (,))) = ((topGen‘ran
(,)) Cn ((TopOpen‘ℂfld) ↾t
ℝ)) |
24 | 9 | cnfldtop 24693 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) ∈ Top |
25 | | cnrest2r 23184 |
. . . . . . . . . 10
⊢
((TopOpen‘ℂfld) ∈ Top →
((topGen‘ran (,)) Cn ((TopOpen‘ℂfld)
↾t ℝ)) ⊆ ((topGen‘ran (,)) Cn
(TopOpen‘ℂfld))) |
26 | 24, 25 | ax-mp 5 |
. . . . . . . . 9
⊢
((topGen‘ran (,)) Cn ((TopOpen‘ℂfld)
↾t ℝ)) ⊆ ((topGen‘ran (,)) Cn
(TopOpen‘ℂfld)) |
27 | 23, 26 | eqsstri 4012 |
. . . . . . . 8
⊢
((topGen‘ran (,)) Cn (topGen‘ran (,))) ⊆
((topGen‘ran (,)) Cn
(TopOpen‘ℂfld)) |
28 | 8 | cnmptid 23558 |
. . . . . . . 8
⊢ (𝜑 → (𝑧 ∈ ℝ ↦ 𝑧) ∈ ((topGen‘ran (,)) Cn
(topGen‘ran (,)))) |
29 | 27, 28 | sselid 3976 |
. . . . . . 7
⊢ (𝜑 → (𝑧 ∈ ℝ ↦ 𝑧) ∈ ((topGen‘ran (,)) Cn
(TopOpen‘ℂfld))) |
30 | 9 | mpomulcn 24778 |
. . . . . . . 8
⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
31 | 30 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
32 | | oveq12 7423 |
. . . . . . 7
⊢ ((𝑢 = ((2 · 𝑁)↑𝑀) ∧ 𝑣 = 𝑧) → (𝑢 · 𝑣) = (((2 · 𝑁)↑𝑀) · 𝑧)) |
33 | 8, 21, 29, 11, 11, 31, 32 | cnmpt12 23564 |
. . . . . 6
⊢ (𝜑 → (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn
(TopOpen‘ℂfld))) |
34 | | 2re 12310 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℝ |
35 | 34 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 2 ∈
ℝ) |
36 | 17 | nnred 12251 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℝ) |
37 | 35, 36 | remulcld 11268 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2 · 𝑁) ∈
ℝ) |
38 | 37, 3 | reexpcld 14153 |
. . . . . . . . . . 11
⊢ (𝜑 → ((2 · 𝑁)↑𝑀) ∈ ℝ) |
39 | 38 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → ((2 · 𝑁)↑𝑀) ∈ ℝ) |
40 | 39, 2 | remulcld 11268 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (((2 · 𝑁)↑𝑀) · 𝑧) ∈ ℝ) |
41 | 40 | fmpttd 7119 |
. . . . . . . 8
⊢ (𝜑 → (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)):ℝ⟶ℝ) |
42 | 41 | frnd 6724 |
. . . . . . 7
⊢ (𝜑 → ran (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ⊆ ℝ) |
43 | | ax-resscn 11189 |
. . . . . . . 8
⊢ ℝ
⊆ ℂ |
44 | 43 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℝ ⊆
ℂ) |
45 | | cnrest2 23183 |
. . . . . . 7
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ ran (𝑧 ∈ ℝ
↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ⊆ ℝ ∧ ℝ ⊆
ℂ) → ((𝑧 ∈
ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn
(TopOpen‘ℂfld)) ↔ (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn
((TopOpen‘ℂfld) ↾t
ℝ)))) |
46 | 10, 42, 44, 45 | mp3an2i 1463 |
. . . . . 6
⊢ (𝜑 → ((𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn
(TopOpen‘ℂfld)) ↔ (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn
((TopOpen‘ℂfld) ↾t
ℝ)))) |
47 | 33, 46 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn
((TopOpen‘ℂfld) ↾t
ℝ))) |
48 | 47, 23 | eleqtrrdi 2840 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn
(topGen‘ran (,)))) |
49 | | ssid 4000 |
. . . . . . 7
⊢ ℂ
⊆ ℂ |
50 | | cncfss 24812 |
. . . . . . 7
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ)) |
51 | 43, 49, 50 | mp2an 691 |
. . . . . 6
⊢
(ℝ–cn→ℝ)
⊆ (ℝ–cn→ℂ) |
52 | | knoppcnlem10.t |
. . . . . . . 8
⊢ 𝑇 = (𝑥 ∈ ℝ ↦
(abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
53 | 52 | dnicn 35961 |
. . . . . . 7
⊢ 𝑇 ∈ (ℝ–cn→ℝ) |
54 | 53 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝑇 ∈ (ℝ–cn→ℝ)) |
55 | 51, 54 | sselid 3976 |
. . . . 5
⊢ (𝜑 → 𝑇 ∈ (ℝ–cn→ℂ)) |
56 | 10 | toponrestid 22816 |
. . . . . . 7
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
57 | 9, 22, 56 | cncfcn 24823 |
. . . . . 6
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℂ) = ((topGen‘ran (,)) Cn
(TopOpen‘ℂfld))) |
58 | 43, 49, 57 | mp2an 691 |
. . . . 5
⊢
(ℝ–cn→ℂ) =
((topGen‘ran (,)) Cn
(TopOpen‘ℂfld)) |
59 | 55, 58 | eleqtrdi 2839 |
. . . 4
⊢ (𝜑 → 𝑇 ∈ ((topGen‘ran (,)) Cn
(TopOpen‘ℂfld))) |
60 | 8, 48, 59 | cnmpt11f 23561 |
. . 3
⊢ (𝜑 → (𝑧 ∈ ℝ ↦ (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧))) ∈ ((topGen‘ran (,)) Cn
(TopOpen‘ℂfld))) |
61 | | oveq12 7423 |
. . 3
⊢ ((𝑢 = (𝐶↑𝑀) ∧ 𝑣 = (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧))) → (𝑢 · 𝑣) = ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧)))) |
62 | 8, 15, 60, 11, 11, 31, 61 | cnmpt12 23564 |
. 2
⊢ (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧)))) ∈ ((topGen‘ran (,)) Cn
(TopOpen‘ℂfld))) |
63 | 6, 62 | eqeltrd 2829 |
1
⊢ (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑀)) ∈ ((topGen‘ran (,)) Cn
(TopOpen‘ℂfld))) |