MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-mre Structured version   Visualization version   GIF version

Definition df-mre 17560
Description: Define a Moore collection, which is a family of subsets of a base set which preserve arbitrary intersection. Elements of a Moore collection are termed closed; Moore collections generalize the notion of closedness from topologies (cldmre 22976) and vector spaces (lssmre 20844) to the most general setting in which such concepts make sense. Definition of Moore collection of sets in [Schechter] p. 78. A Moore collection may also be called a closure system (Section 0.6 in [Gratzer] p. 23.) The name Moore collection is after Eliakim Hastings Moore, who discussed these systems in Part I of [Moore] p. 53 to 76.

See ismre 17564, mresspw 17566, mre1cl 17568 and mreintcl 17569 for the major properties of a Moore collection. Note that a Moore collection uniquely determines its base set (mreuni 17574); as such the disjoint union of all Moore collections is sometimes considered as ran Moore, justified by mreunirn 17575. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Revised by David Moews, 1-May-2017.)

Assertion
Ref Expression
df-mre Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
Distinct variable group:   𝑠,𝑐,𝑥

Detailed syntax breakdown of Definition df-mre
StepHypRef Expression
1 cmre 17556 . 2 class Moore
2 vx . . 3 setvar 𝑥
3 cvv 3470 . . 3 class V
4 vc . . . . . 6 setvar 𝑐
52, 4wel 2100 . . . . 5 wff 𝑥𝑐
6 vs . . . . . . . . 9 setvar 𝑠
76cv 1533 . . . . . . . 8 class 𝑠
8 c0 4319 . . . . . . . 8 class
97, 8wne 2936 . . . . . . 7 wff 𝑠 ≠ ∅
107cint 4945 . . . . . . . 8 class 𝑠
114cv 1533 . . . . . . . 8 class 𝑐
1210, 11wcel 2099 . . . . . . 7 wff 𝑠𝑐
139, 12wi 4 . . . . . 6 wff (𝑠 ≠ ∅ → 𝑠𝑐)
1411cpw 4599 . . . . . 6 class 𝒫 𝑐
1513, 6, 14wral 3057 . . . . 5 wff 𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐)
165, 15wa 395 . . . 4 wff (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))
172cv 1533 . . . . . 6 class 𝑥
1817cpw 4599 . . . . 5 class 𝒫 𝑥
1918cpw 4599 . . . 4 class 𝒫 𝒫 𝑥
2016, 4, 19crab 3428 . . 3 class {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))}
212, 3, 20cmpt 5226 . 2 class (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
221, 21wceq 1534 1 wff Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
Colors of variables: wff setvar class
This definition is referenced by:  ismre  17564  fnmre  17565
  Copyright terms: Public domain W3C validator
OSZAR »