![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnmre | Structured version Visualization version GIF version |
Description: The Moore collection generator is a well-behaved function. Analogue for Moore collections of fntopon 22819 for topologies. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
fnmre | ⊢ Moore Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vpwex 5371 | . . . 4 ⊢ 𝒫 𝑥 ∈ V | |
2 | 1 | pwex 5374 | . . 3 ⊢ 𝒫 𝒫 𝑥 ∈ V |
3 | 2 | rabex 5328 | . 2 ⊢ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))} ∈ V |
4 | df-mre 17559 | . 2 ⊢ Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) | |
5 | 3, 4 | fnmpti 6692 | 1 ⊢ Moore Fn V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ≠ wne 2936 ∀wral 3057 {crab 3428 Vcvv 3470 ∅c0 4318 𝒫 cpw 4598 ∩ cint 4944 Fn wfn 6537 Moorecmre 17555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-fun 6544 df-fn 6545 df-mre 17559 |
This theorem is referenced by: mreunirn 17574 |
Copyright terms: Public domain | W3C validator |