![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqrtcn | Structured version Visualization version GIF version |
Description: Continuity of the square root function. (Contributed by Mario Carneiro, 2-May-2016.) |
Ref | Expression |
---|---|
sqrcn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
Ref | Expression |
---|---|
sqrtcn | ⊢ (√ ↾ 𝐷) ∈ (𝐷–cn→ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqrtf 15343 | . . . . . . 7 ⊢ √:ℂ⟶ℂ | |
2 | 1 | a1i 11 | . . . . . 6 ⊢ (⊤ → √:ℂ⟶ℂ) |
3 | 2 | feqmptd 6967 | . . . . 5 ⊢ (⊤ → √ = (𝑥 ∈ ℂ ↦ (√‘𝑥))) |
4 | 3 | reseq1d 5984 | . . . 4 ⊢ (⊤ → (√ ↾ 𝐷) = ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ 𝐷)) |
5 | sqrcn.d | . . . . . 6 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
6 | difss 4130 | . . . . . 6 ⊢ (ℂ ∖ (-∞(,]0)) ⊆ ℂ | |
7 | 5, 6 | eqsstri 4014 | . . . . 5 ⊢ 𝐷 ⊆ ℂ |
8 | resmpt 6041 | . . . . 5 ⊢ (𝐷 ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ (√‘𝑥))) | |
9 | 7, 8 | mp1i 13 | . . . 4 ⊢ (⊤ → ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ (√‘𝑥))) |
10 | 7 | sseli 3976 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ) |
11 | 10 | adantl 481 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ ℂ) |
12 | cxpsqrt 26650 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ → (𝑥↑𝑐(1 / 2)) = (√‘𝑥)) | |
13 | 11, 12 | syl 17 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐷) → (𝑥↑𝑐(1 / 2)) = (√‘𝑥)) |
14 | 13 | eqcomd 2734 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐷) → (√‘𝑥) = (𝑥↑𝑐(1 / 2))) |
15 | 14 | mpteq2dva 5248 | . . . 4 ⊢ (⊤ → (𝑥 ∈ 𝐷 ↦ (√‘𝑥)) = (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐(1 / 2)))) |
16 | 4, 9, 15 | 3eqtrd 2772 | . . 3 ⊢ (⊤ → (√ ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐(1 / 2)))) |
17 | eqid 2728 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
18 | 17 | cnfldtopon 24712 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
19 | 18 | a1i 11 | . . . . . 6 ⊢ (⊤ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
20 | resttopon 23078 | . . . . . 6 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷)) | |
21 | 19, 7, 20 | sylancl 585 | . . . . 5 ⊢ (⊤ → ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷)) |
22 | 21 | cnmptid 23578 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ 𝐷 ↦ 𝑥) ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn ((TopOpen‘ℂfld) ↾t 𝐷))) |
23 | ax-1cn 11197 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
24 | halfcl 12468 | . . . . . . 7 ⊢ (1 ∈ ℂ → (1 / 2) ∈ ℂ) | |
25 | 23, 24 | mp1i 13 | . . . . . 6 ⊢ (⊤ → (1 / 2) ∈ ℂ) |
26 | 21, 19, 25 | cnmptc 23579 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ 𝐷 ↦ (1 / 2)) ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld))) |
27 | eqid 2728 | . . . . . . 7 ⊢ ((TopOpen‘ℂfld) ↾t 𝐷) = ((TopOpen‘ℂfld) ↾t 𝐷) | |
28 | 5, 17, 27 | cxpcn 26692 | . . . . . 6 ⊢ (𝑦 ∈ 𝐷, 𝑧 ∈ ℂ ↦ (𝑦↑𝑐𝑧)) ∈ ((((TopOpen‘ℂfld) ↾t 𝐷) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
29 | 28 | a1i 11 | . . . . 5 ⊢ (⊤ → (𝑦 ∈ 𝐷, 𝑧 ∈ ℂ ↦ (𝑦↑𝑐𝑧)) ∈ ((((TopOpen‘ℂfld) ↾t 𝐷) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
30 | oveq12 7429 | . . . . 5 ⊢ ((𝑦 = 𝑥 ∧ 𝑧 = (1 / 2)) → (𝑦↑𝑐𝑧) = (𝑥↑𝑐(1 / 2))) | |
31 | 21, 22, 26, 21, 19, 29, 30 | cnmpt12 23584 | . . . 4 ⊢ (⊤ → (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐(1 / 2))) ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld))) |
32 | ssid 4002 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
33 | 18 | toponrestid 22836 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ) |
34 | 17, 27, 33 | cncfcn 24843 | . . . . 5 ⊢ ((𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐷–cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld))) |
35 | 7, 32, 34 | mp2an 691 | . . . 4 ⊢ (𝐷–cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)) |
36 | 31, 35 | eleqtrrdi 2840 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐(1 / 2))) ∈ (𝐷–cn→ℂ)) |
37 | 16, 36 | eqeltrd 2829 | . 2 ⊢ (⊤ → (√ ↾ 𝐷) ∈ (𝐷–cn→ℂ)) |
38 | 37 | mptru 1541 | 1 ⊢ (√ ↾ 𝐷) ∈ (𝐷–cn→ℂ) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1534 ⊤wtru 1535 ∈ wcel 2099 ∖ cdif 3944 ⊆ wss 3947 ↦ cmpt 5231 ↾ cres 5680 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 ∈ cmpo 7422 ℂcc 11137 0cc0 11139 1c1 11140 -∞cmnf 11277 / cdiv 11902 2c2 12298 (,]cioc 13358 √csqrt 15213 ↾t crest 17402 TopOpenctopn 17403 ℂfldccnfld 21279 TopOnctopon 22825 Cn ccn 23141 ×t ctx 23477 –cn→ccncf 24809 ↑𝑐ccxp 26502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9665 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 ax-addf 11218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-om 7871 df-1st 7993 df-2nd 7994 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9387 df-fi 9435 df-sup 9466 df-inf 9467 df-oi 9534 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-z 12590 df-dec 12709 df-uz 12854 df-q 12964 df-rp 13008 df-xneg 13125 df-xadd 13126 df-xmul 13127 df-ioo 13361 df-ioc 13362 df-ico 13363 df-icc 13364 df-fz 13518 df-fzo 13661 df-fl 13790 df-mod 13868 df-seq 14000 df-exp 14060 df-fac 14266 df-bc 14295 df-hash 14323 df-shft 15047 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-limsup 15448 df-clim 15465 df-rlim 15466 df-sum 15666 df-ef 16044 df-sin 16046 df-cos 16047 df-tan 16048 df-pi 16049 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-starv 17248 df-sca 17249 df-vsca 17250 df-ip 17251 df-tset 17252 df-ple 17253 df-ds 17255 df-unif 17256 df-hom 17257 df-cco 17258 df-rest 17404 df-topn 17405 df-0g 17423 df-gsum 17424 df-topgen 17425 df-pt 17426 df-prds 17429 df-xrs 17484 df-qtop 17489 df-imas 17490 df-xps 17492 df-mre 17566 df-mrc 17567 df-acs 17569 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-submnd 18741 df-mulg 19024 df-cntz 19268 df-cmn 19737 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22862 df-cld 22936 df-ntr 22937 df-cls 22938 df-nei 23015 df-lp 23053 df-perf 23054 df-cn 23144 df-cnp 23145 df-haus 23232 df-cmp 23304 df-tx 23479 df-hmeo 23672 df-fil 23763 df-fm 23855 df-flim 23856 df-flf 23857 df-xms 24239 df-ms 24240 df-tms 24241 df-cncf 24811 df-limc 25808 df-dv 25809 df-log 26503 df-cxp 26504 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |