![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cxpcncf1 | Structured version Visualization version GIF version |
Description: The power function on complex numbers, for fixed exponent A, is continuous. Similar to cxpcn 26678. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
Ref | Expression |
---|---|
cxpcncf1.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
cxpcncf1.d | ⊢ (𝜑 → 𝐷 ⊆ (ℂ ∖ (-∞(,]0))) |
Ref | Expression |
---|---|
cxpcncf1 | ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐𝐴)) ∈ (𝐷–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cxpcncf1.d | . . 3 ⊢ (𝜑 → 𝐷 ⊆ (ℂ ∖ (-∞(,]0))) | |
2 | resmpt 6041 | . . 3 ⊢ (𝐷 ⊆ (ℂ ∖ (-∞(,]0)) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐𝐴))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐𝐴))) |
4 | eqid 2728 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
5 | 4 | cnfldtopon 24698 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
6 | difss 4130 | . . . . . . 7 ⊢ (ℂ ∖ (-∞(,]0)) ⊆ ℂ | |
7 | resttopon 23064 | . . . . . . 7 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (ℂ ∖ (-∞(,]0)) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ∈ (TopOn‘(ℂ ∖ (-∞(,]0)))) | |
8 | 5, 6, 7 | mp2an 691 | . . . . . 6 ⊢ ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ∈ (TopOn‘(ℂ ∖ (-∞(,]0))) |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ∈ (TopOn‘(ℂ ∖ (-∞(,]0)))) |
10 | 9 | cnmptid 23564 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ 𝑥) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))))) |
11 | 5 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
12 | cxpcncf1.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
13 | 9, 11, 12 | cnmptc 23565 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ 𝐴) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld))) |
14 | eqid 2728 | . . . . . . 7 ⊢ (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0)) | |
15 | eqid 2728 | . . . . . . 7 ⊢ ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) = ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) | |
16 | 14, 4, 15 | cxpcn 26678 | . . . . . 6 ⊢ (𝑦 ∈ (ℂ ∖ (-∞(,]0)), 𝑧 ∈ ℂ ↦ (𝑦↑𝑐𝑧)) ∈ ((((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
17 | 16 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ (ℂ ∖ (-∞(,]0)), 𝑧 ∈ ℂ ↦ (𝑦↑𝑐𝑧)) ∈ ((((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
18 | oveq12 7429 | . . . . 5 ⊢ ((𝑦 = 𝑥 ∧ 𝑧 = 𝐴) → (𝑦↑𝑐𝑧) = (𝑥↑𝑐𝐴)) | |
19 | 9, 10, 13, 9, 11, 17, 18 | cnmpt12 23570 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld))) |
20 | ssid 4002 | . . . . . . 7 ⊢ ℂ ⊆ ℂ | |
21 | 5 | toponrestid 22822 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ) |
22 | 4, 15, 21 | cncfcn 24829 | . . . . . . 7 ⊢ (((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((ℂ ∖ (-∞(,]0))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld))) |
23 | 6, 20, 22 | mp2an 691 | . . . . . 6 ⊢ ((ℂ ∖ (-∞(,]0))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld)) |
24 | 23 | eqcomi 2737 | . . . . 5 ⊢ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld)) = ((ℂ ∖ (-∞(,]0))–cn→ℂ) |
25 | 24 | a1i 11 | . . . 4 ⊢ (𝜑 → (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn (TopOpen‘ℂfld)) = ((ℂ ∖ (-∞(,]0))–cn→ℂ)) |
26 | 19, 25 | eleqtrd 2831 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ)) |
27 | rescncf 24816 | . . . 4 ⊢ (𝐷 ⊆ (ℂ ∖ (-∞(,]0)) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ↾ 𝐷) ∈ (𝐷–cn→ℂ))) | |
28 | 27 | imp 406 | . . 3 ⊢ ((𝐷 ⊆ (ℂ ∖ (-∞(,]0)) ∧ (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ)) → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ↾ 𝐷) ∈ (𝐷–cn→ℂ)) |
29 | 1, 26, 28 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↦ (𝑥↑𝑐𝐴)) ↾ 𝐷) ∈ (𝐷–cn→ℂ)) |
30 | 3, 29 | eqeltrrd 2830 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐𝐴)) ∈ (𝐷–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∖ cdif 3944 ⊆ wss 3947 ↦ cmpt 5231 ↾ cres 5680 ‘cfv 6548 (class class class)co 7420 ∈ cmpo 7422 ℂcc 11136 0cc0 11138 -∞cmnf 11276 (,]cioc 13357 ↾t crest 17401 TopOpenctopn 17402 ℂfldccnfld 21278 TopOnctopon 22811 Cn ccn 23127 ×t ctx 23463 –cn→ccncf 24795 ↑𝑐ccxp 26488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-om 7871 df-1st 7993 df-2nd 7994 df-supp 8166 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-2o 8487 df-er 8724 df-map 8846 df-pm 8847 df-ixp 8916 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-fsupp 9386 df-fi 9434 df-sup 9465 df-inf 9466 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-q 12963 df-rp 13007 df-xneg 13124 df-xadd 13125 df-xmul 13126 df-ioo 13360 df-ioc 13361 df-ico 13362 df-icc 13363 df-fz 13517 df-fzo 13660 df-fl 13789 df-mod 13867 df-seq 13999 df-exp 14059 df-fac 14265 df-bc 14294 df-hash 14322 df-shft 15046 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-limsup 15447 df-clim 15464 df-rlim 15465 df-sum 15665 df-ef 16043 df-sin 16045 df-cos 16046 df-tan 16047 df-pi 16048 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-starv 17247 df-sca 17248 df-vsca 17249 df-ip 17250 df-tset 17251 df-ple 17252 df-ds 17254 df-unif 17255 df-hom 17256 df-cco 17257 df-rest 17403 df-topn 17404 df-0g 17422 df-gsum 17423 df-topgen 17424 df-pt 17425 df-prds 17428 df-xrs 17483 df-qtop 17488 df-imas 17489 df-xps 17491 df-mre 17565 df-mrc 17566 df-acs 17568 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-submnd 18740 df-mulg 19023 df-cntz 19267 df-cmn 19736 df-psmet 21270 df-xmet 21271 df-met 21272 df-bl 21273 df-mopn 21274 df-fbas 21275 df-fg 21276 df-cnfld 21279 df-top 22795 df-topon 22812 df-topsp 22834 df-bases 22848 df-cld 22922 df-ntr 22923 df-cls 22924 df-nei 23001 df-lp 23039 df-perf 23040 df-cn 23130 df-cnp 23131 df-haus 23218 df-cmp 23290 df-tx 23465 df-hmeo 23658 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-xms 24225 df-ms 24226 df-tms 24227 df-cncf 24797 df-limc 25794 df-dv 25795 df-log 26489 df-cxp 26490 |
This theorem is referenced by: logdivsqrle 34282 |
Copyright terms: Public domain | W3C validator |