![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvlem | Structured version Visualization version GIF version |
Description: Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
dvlem.1 | ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
dvlem.2 | ⊢ (𝜑 → 𝐷 ⊆ ℂ) |
dvlem.3 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
Ref | Expression |
---|---|
dvlem | ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷 ∖ {𝐵})) → (((𝐹‘𝐴) − (𝐹‘𝐵)) / (𝐴 − 𝐵)) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4791 | . 2 ⊢ (𝐴 ∈ (𝐷 ∖ {𝐵}) ↔ (𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵)) | |
2 | dvlem.1 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) | |
3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵)) → 𝐹:𝐷⟶ℂ) |
4 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵)) → 𝐴 ∈ 𝐷) | |
5 | 3, 4 | ffvelcdmd 7095 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵)) → (𝐹‘𝐴) ∈ ℂ) |
6 | dvlem.3 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵)) → 𝐵 ∈ 𝐷) |
8 | 3, 7 | ffvelcdmd 7095 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵)) → (𝐹‘𝐵) ∈ ℂ) |
9 | 5, 8 | subcld 11601 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵)) → ((𝐹‘𝐴) − (𝐹‘𝐵)) ∈ ℂ) |
10 | dvlem.2 | . . . . . 6 ⊢ (𝜑 → 𝐷 ⊆ ℂ) | |
11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵)) → 𝐷 ⊆ ℂ) |
12 | 11, 4 | sseldd 3981 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵)) → 𝐴 ∈ ℂ) |
13 | 11, 7 | sseldd 3981 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵)) → 𝐵 ∈ ℂ) |
14 | 12, 13 | subcld 11601 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵)) → (𝐴 − 𝐵) ∈ ℂ) |
15 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵)) → 𝐴 ≠ 𝐵) | |
16 | 12, 13, 15 | subne0d 11610 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵)) → (𝐴 − 𝐵) ≠ 0) |
17 | 9, 14, 16 | divcld 12020 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵)) → (((𝐹‘𝐴) − (𝐹‘𝐵)) / (𝐴 − 𝐵)) ∈ ℂ) |
18 | 1, 17 | sylan2b 593 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷 ∖ {𝐵})) → (((𝐹‘𝐴) − (𝐹‘𝐵)) / (𝐴 − 𝐵)) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ≠ wne 2937 ∖ cdif 3944 ⊆ wss 3947 {csn 4629 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 ℂcc 11136 − cmin 11474 / cdiv 11901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 |
This theorem is referenced by: perfdvf 25831 dvreslem 25837 dvcnp 25847 dvcnp2 25848 dvcnp2OLD 25849 dvaddbr 25867 dvmulbr 25868 dvmulbrOLD 25869 dvcobr 25876 dvcobrOLD 25877 dvcjbr 25880 dvcnvlem 25907 dvferm1 25916 dvferm2 25918 ftc1lem6 25975 ulmdvlem3 26337 unbdqndv1 35983 ftc1cnnc 37165 fperdvper 45307 |
Copyright terms: Public domain | W3C validator |