MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlem Structured version   Visualization version   GIF version

Theorem dvlem 25824
Description: Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
dvlem.1 (𝜑𝐹:𝐷⟶ℂ)
dvlem.2 (𝜑𝐷 ⊆ ℂ)
dvlem.3 (𝜑𝐵𝐷)
Assertion
Ref Expression
dvlem ((𝜑𝐴 ∈ (𝐷 ∖ {𝐵})) → (((𝐹𝐴) − (𝐹𝐵)) / (𝐴𝐵)) ∈ ℂ)

Proof of Theorem dvlem
StepHypRef Expression
1 eldifsn 4791 . 2 (𝐴 ∈ (𝐷 ∖ {𝐵}) ↔ (𝐴𝐷𝐴𝐵))
2 dvlem.1 . . . . . 6 (𝜑𝐹:𝐷⟶ℂ)
32adantr 480 . . . . 5 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐹:𝐷⟶ℂ)
4 simprl 770 . . . . 5 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐴𝐷)
53, 4ffvelcdmd 7095 . . . 4 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → (𝐹𝐴) ∈ ℂ)
6 dvlem.3 . . . . . 6 (𝜑𝐵𝐷)
76adantr 480 . . . . 5 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐵𝐷)
83, 7ffvelcdmd 7095 . . . 4 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → (𝐹𝐵) ∈ ℂ)
95, 8subcld 11601 . . 3 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → ((𝐹𝐴) − (𝐹𝐵)) ∈ ℂ)
10 dvlem.2 . . . . . 6 (𝜑𝐷 ⊆ ℂ)
1110adantr 480 . . . . 5 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐷 ⊆ ℂ)
1211, 4sseldd 3981 . . . 4 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐴 ∈ ℂ)
1311, 7sseldd 3981 . . . 4 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐵 ∈ ℂ)
1412, 13subcld 11601 . . 3 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → (𝐴𝐵) ∈ ℂ)
15 simprr 772 . . . 4 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → 𝐴𝐵)
1612, 13, 15subne0d 11610 . . 3 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → (𝐴𝐵) ≠ 0)
179, 14, 16divcld 12020 . 2 ((𝜑 ∧ (𝐴𝐷𝐴𝐵)) → (((𝐹𝐴) − (𝐹𝐵)) / (𝐴𝐵)) ∈ ℂ)
181, 17sylan2b 593 1 ((𝜑𝐴 ∈ (𝐷 ∖ {𝐵})) → (((𝐹𝐴) − (𝐹𝐵)) / (𝐴𝐵)) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2099  wne 2937  cdif 3944  wss 3947  {csn 4629  wf 6544  cfv 6548  (class class class)co 7420  cc 11136  cmin 11474   / cdiv 11901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902
This theorem is referenced by:  perfdvf  25831  dvreslem  25837  dvcnp  25847  dvcnp2  25848  dvcnp2OLD  25849  dvaddbr  25867  dvmulbr  25868  dvmulbrOLD  25869  dvcobr  25876  dvcobrOLD  25877  dvcjbr  25880  dvcnvlem  25907  dvferm1  25916  dvferm2  25918  ftc1lem6  25975  ulmdvlem3  26337  unbdqndv1  35983  ftc1cnnc  37165  fperdvper  45307
  Copyright terms: Public domain W3C validator
OSZAR »