![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovmpot | Structured version Visualization version GIF version |
Description: The value of an operation is equal to the value of the same operation expressed in maps-to notation. (Contributed by GG, 16-Mar-2025.) (Revised by GG, 13-Apr-2025.) |
Ref | Expression |
---|---|
ovmpot | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ (𝑥𝐹𝑦))𝐵) = (𝐴𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 7429 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥𝐹𝑦) = (𝐴𝐹𝐵)) | |
2 | eqid 2728 | . 2 ⊢ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ (𝑥𝐹𝑦)) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ (𝑥𝐹𝑦)) | |
3 | ovex 7453 | . 2 ⊢ (𝐴𝐹𝐵) ∈ V | |
4 | 1, 2, 3 | ovmpoa 7576 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ (𝑥𝐹𝑦))𝐵) = (𝐴𝐹𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 (class class class)co 7420 ∈ cmpo 7422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6500 df-fun 6550 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 |
This theorem is referenced by: cncrng 21316 cnfld1 21321 cndrng 21326 cnflddiv 21328 cnsubrglem 21349 expcn 24803 negcncf 24855 dvcnp2 25862 dvmulbr 25882 dvcobr 25890 cmvth 25936 dvfsumle 25967 dvfsumlem2 25974 dvply2g 26232 taylply2 26315 taylthlem2 26322 mpodvdsmulf1o 27139 fsumdvdsmul 27140 |
Copyright terms: Public domain | W3C validator |